Enhanced Vascular Endothelial Cell Function on Nanostructured Titanium Surface Features: The Role of Nano to Submicron Roughness

2008 ◽  
Vol 1136 ◽  
Author(s):  
Jing Lu ◽  
Dongwoo Khang ◽  
Thomas J. Webster

ABSTRACTTo study the contribution of different surface feature properties in improving vascular endothelial cell adhesion, rationally designed nano/sub-micron patterns with various dimensions were created on titanium surfaces in this study. In vitro results indicated that endothelial cell adhesion was improved when the titanium pattern dimensions decreased into the nano-scale. Specifically, endothelial cells preferred to adhere on sub-micron and nano rough titanium substrates compared to flat titanium. Moreover, titanium with nano and sub-micron roughness and with the same chemistry as compared to flat titanium, had significantly greater surface energy. Thus, the present study indicated the strong potential of surface nanotopography and nano/sub-micron roughness for improving current vascular stent design.

2002 ◽  
Vol 282 (2) ◽  
pp. C395-C402 ◽  
Author(s):  
Christy-Lynn M. Cooke ◽  
Sandra T. Davidge

Peroxynitrite, a marker of oxidative stress, is elevated in conditions associated with vascular endothelial cell dysfunction, such as atherosclerosis, preeclampsia, and diabetes. However, the effects of peroxynitrite on endothelial cell function are not clear. The endothelium-derived enzymes nitric oxide synthase (NOS) and prostaglandin H synthase (PGHS) mediate vascular reactivity and contain oxidant-sensitive isoforms (iNOS and PGHS-2) that can be induced by nuclear factor (NF)-κB activation. We investigated the effect(s) of peroxynitrite on NOS and PGHS pathways in endothelial cells. We hypothesized that peroxynitrite will increase levels of iNOS and PGHS-2 through activation of NF-κB. Western immunoblots of endothelial cells show that 3-morpholinosydnonimine (SIN-1; 0.5 mM), a peroxynitrite donor, increased iNOS protein mass, which can be inhibited by pyrroline dithiocarbamate (an NF-κB inhibitor) (167 ± 24.2 vs. 78 ± 19%, P < 0.05, n = 6). SIN-1 treatment also significantly increased NF-κB translocation into endothelial cell nuclei (135 ± 10%, P < 0.05). Endothelial NOS, PGHS-1, and PGHS-2 protein levels were not altered by SIN-1. However, prostacyclin synthase protein mass, but not mRNA, was significantly reduced in SIN-1-treated endothelial cells (78 ± 8.9%, P < 0.05). Our results illustrate novel mechanisms through which peroxynitrite may modulate vascular endothelial function.


Sign in / Sign up

Export Citation Format

Share Document