Ion Beam Modification of Pt Electrocatalyst Nanoparticles for Polymer Electrolyte Membrane Fuel Cells

2009 ◽  
Vol 1217 ◽  
Author(s):  
Tetsuya Yamaki ◽  
Shunya Yamamoto ◽  
Teruyuki Hakoda ◽  
Hiroshi Koshikawa

AbstractPlatinum (Pt) nanoparticles were prepared on a glassy carbon plate by a sputtering method and then irradiated with proton (H+) beams at energies of 0.38 and 10 MeV at room temperature. Cyclic voltammetry in an aqueous 0.5 mol/dm3 H2SO4 solution suggested that the lower-energy beam irradiation enhanced the active surface area of the Pt nanoparticles, calculated from the coulombic charge for hydrogen desorption. Thus, the nanoparticles would be modified by H+ beam-induced electronic excitation so that they have higher surface activity. The mechanism of this irradiation effect seems to be rather complicated and is still unclear at present, but we may discuss it in relation to a change in the interfacial crystal structure during the irradiation.


Author(s):  
Rajesh Kumar Polagani ◽  
Prashant L. Suryawanshi ◽  
Shirish H. Sonawane ◽  
Mahendra Chinthala

Abstract Developing high-performance electrocatalysts using simple and controllable methods is of interest to reduce the cost of polymer electrolyte membrane fuel cells. In this study, platinum is alloyed with nickel and supported on carbon (Pt–Ni/C) via an ultrasound-assisted route. The crystallite and particle sizes of the obtained nanoparticles were smaller than the commercial carbon-supported Pt nanoparticles. The sonochemically synthesized Pt–Ni/C nanoparticles exhibited superior electrocatalytic properties than the commercial Pt/C nanoparticles in the fuel cell operation. Electrochemical measurements performed with Pt–Ni/C electrocatalyst displayed excellent oxygen reduction and higher electrochemical active surface area (EASA). Optimum fuel cell performance based on peak power density using Pt–Ni/C electrocatalyst was observed as 0.28 W/cm2 at 0.39 V.



Author(s):  
Cristina Silva ◽  
Irina Borbáth ◽  
Kristóf Zelenka ◽  
István E. Sajó ◽  
György Sáfrán ◽  
...  

AbstractTi(1-x)MoxO2-carbon composites are promising new supports for Pt-based electrocatalysts in polymer electrolyte membrane fuel cells offering exciting catalytic properties and enhanced stability against electrocorrosion. Pt and the mixed oxide form a couple liable for strong metal-support interaction (SMSI) phenomenon, generally manifesting itself in decoration of the metal particles by ultrathin layers of the support material upon annealing under reductive conditions. The aim of this work is to evaluate the SMSI phenomenon as a potential strategy for tailoring the properties of the electrocatalyst. A 20 wt% Pt/50 wt% Ti0.8Mo0.2O2-50 wt% C electrocatalyst prepared on Black Pearls 2000 carbon functionalized with HNO3 and glucose was reduced at 250 °C in H2 in order to induce SMSI. The electrocatalytic properties and the stability of the reduced and the original catalysts were analyzed by cyclic voltammetry and COads stripping voltammetry. Structural investigations as well as X-ray photoelectron spectroscopy (XPS) measurements were performed in order to obtain information about the details of the interaction between the oxide and the Pt particles. The electrochemical experiments pointed out a small loss of the electrochemically active surface area of Pt in the reduced catalyst along with enhanced stability with respect to the original one, while structural studies suggested only a minimal decrease of the Pt dispersion. At the same time, hydrogen exposure experiments combined with XPS demonstrated the presence of Mo species directly adsorbed on the Pt surface. Thus, the properties of the reduced catalyst can be traced to decoration of the surface of Pt by Mo-containing species.



Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2054 ◽  
Author(s):  
Manik Mayur ◽  
Mathias Gerard ◽  
Pascal Schott ◽  
Wolfgang Bessler

One of the bottlenecks hindering the usage of polymer electrolyte membrane fuel cell technology in automotive applications is the highly load-sensitive degradation of the cell components. The cell failure cases reported in the literature show localized cell component degradation, mainly caused by flow-field dependent non-uniform distribution of reactants. The existing methodologies for diagnostics of localized cell failure are either invasive or require sophisticated and expensive apparatus. In this study, with the help of a multiscale simulation framework, a single polymer electrolyte membrane fuel cell (PEMFC) model is exposed to a standardized drive cycle provided by a system model of a fuel cell car. A 2D multiphysics model of the PEMFC is used to investigate catalyst degradation due to spatio-temporal variations in the fuel cell state variables under the highly transient load cycles. A three-step (extraction, oxidation, and dissolution) model of platinum loss in the cathode catalyst layer is used to investigate the cell performance degradation due to the consequent reduction in the electro-chemical active surface area (ECSA). By using a time-upscaling methodology, we present a comparative prediction of cell end-of-life (EOL) under different driving behavior of New European Driving Cycle (NEDC) and Worldwide Harmonized Light Vehicles Test Cycle (WLTC).



RSC Advances ◽  
2016 ◽  
Vol 6 (113) ◽  
pp. 112226-112231 ◽  
Author(s):  
Calvin Xu ◽  
Md Ariful Hoque ◽  
Gordon Chiu ◽  
Teresa Sung ◽  
Zhongwei Chen

Post-heat treatment of dealloyed Pt–Ni nanoparticles on sulfur-doped graphene for PEM fuel cell cathode catalysis exhibit greatly improved activity and electrochemically active surface area retention over Pt/C in half-cell conditions.



2018 ◽  
Vol 8 (10) ◽  
pp. 2672-2685 ◽  
Author(s):  
Rhiyaad Mohamed ◽  
Tobias Binninger ◽  
Patricia J. Kooyman ◽  
Armin Hoell ◽  
Emiliana Fabbri ◽  
...  

Synthesis of Sb–SnO2 supported Pt nanoparticles with an outstanding ECSA for the oxygen reduction reaction.



Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 597
Author(s):  
Martin González-Hernández ◽  
Ermete Antolini ◽  
Joelma Perez

Pt electrocatalysts supported on pristine graphene nanosheets (GNS) and nitrogen-doped graphene nanoplatelets (N-GNP) were prepared through the ethylene glycol process, and a comparison of their CO tolerance and stability as anode materials in polymer electrolyte membrane fuel cells (PEMFCs) with those of the conventional carbon (C)-supported Pt was made. Repetitive potential cycling in a half cell showed that Pt/GNS catalysts have the highest stability, in terms of the highest sintering resistance (lowest particle growth) and the lowest electrochemically active surface area loss. By tests in PEMFCs, the Pt/N-GNP catalyst showed the highest CO tolerance, while the poisoning resistance of Pt/GNS was lower than that of Pt/C. The higher CO tolerance of Pt/N-GNP than that of Pt/GNS was ascribed to the presence of a defect in graphene, generated by N-doping, decreasing CO adsorption energy.



2013 ◽  
Vol 38 (30) ◽  
pp. 13393-13398 ◽  
Author(s):  
D. Dixon ◽  
J. Melke ◽  
M. Botros ◽  
J. Rathore ◽  
H. Ehrenberg ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document