A Corrosion Localization Assessment of the Mild Steel Used for Nuclear Waste Package

1989 ◽  
Vol 176 ◽  
Author(s):  
Masatsune Akashi ◽  
Takanori Fukuda ◽  
Hiroshi Yoneyama

ABSTRACTThis paper describes a study of corrosion behavior of a mild steel as a candidate of the high-level nuclear waste package in the geological disposal situations, conducted to establish a model for estimating the corrosion allowance requirement to achieve the 1,000 year lifetime for the package. In several series of galvanostatic tests, the maximum penetration depth and the depth distribution were measured for each specimen with a sophisticated ultrasonic inspection technique. The Gumbel distribution model was successfully used in analyzing each set of data for the maximum penetration depth. Relations among the average penetration depth, the maximum penetration depth, and the corrosion allowance requirement were discussed.

1986 ◽  
Vol 84 ◽  
Author(s):  
S. G. Pitman

AbstractIn current conceptual designs, a mild steel (ASTM A?16 Grade WCA) is the relerence container material for use in high level nuclear waste packages intended for emplacement in a salt repository. The resistance of the steel to stress corrosion crackinq (SCC) is being investigated as part of the effort underway to verify the suitability of the material for waste package applications. Static tests (U-bend and bolt-loaded fracture toughness specimens) and dynamic tests (slow strain rate and corrosion fatigue) were conducted on both as-cast and weldment specimens of the material, in both low-Mg and high-Mg halite-saturated brines, in the temperature range of 90 to 200°C. The investigations indicate that the steel is not susceptible to SCC under the test conditions employed.


2019 ◽  
Vol 35 (6) ◽  
pp. 949-957 ◽  
Author(s):  
Luhua Han ◽  
Francis Kumi ◽  
Hanping Mao ◽  
Jianping Hu

HighlightsA multi-pin flexible pick-up gripper with a four-jaw chuck having four pick-up pins has been developed.The gripper can effectively grasp, hold and release plug seedlings with low damages to the plants and the root soil.Based on a typical on-off control and cylinder stroke position detection, the control system for timely response was designed to automate the process of picking up and releasing seedlings.Abstract. A multi-pin flexible seedling pick-up gripper for automatic transplanting was developed and evaluated. The gripper having a four-jaw chuck mainly consists of a parallel-type air gripper with four fingers, four fork frames, four cylinder fingers, and several connecting/supporting parts. The air gripper moves to open and close the cylinder fingers, and the cylinder fingers each having a flexible pin grasp and release the seedling. When the pick-up gripper extracts seedlings from the tray cells, its four cylindrical fingers push out four pick-up pins to penetrate deep into the root soil and then close, making the pick-up pins to firmly hold the root soil for lifting. When the pick-up gripper releases seedlings, its fingers open, making the pick-up pins loosen the root soil and then pull back for discharging. An electrical and pneumatic control system was designed to coordinate the execution of each action. The pick-up gripper attached to a robotic manipulator was tested on a range of plug seedling transplanting parameters and conditions. The results showed that penetration depth, seedling species, and the interaction of working pressure and seedling species significantly influenced the successful automatic transplanting. On the whole, the seedling integrity ratio in automatic transplanting was found to be up to 93.37%. For optimum performance of the device in transplanting seedlings, the pick-up pins of the multi-pin gripper need to grasp the maximum amount of root soil at their maximum penetration depth. Keywords: Gripper, Flexible, Multi-pin, Seedlings, Transplanting.


1997 ◽  
Vol 506 ◽  
Author(s):  
M.J. Apted

ABSTRACTAn alternative waste-package design for the geological disposal of high-level waste (HLW) glass is presented. In conventional designs, a massive buffer of compacted bentonite is placed around a thick-walled, mild-steel overpack; in the revised design, a much thinner buffer is placed within a thin-walled, mild-steel overpack. This simple expedient eliminates certain performance concerns in existing waste-package designs, while not necessitating the study of any new materials. This integrated waste package (IWP) design has comparable release-rate performance as current package designs for HLW. In addition, the 1WP design requires far-less rock excavation, permits significantly higher temperatures for longer periods, leads to a 20-50% reduction in repository area, and is more cost efficient than previous designs.


2011 ◽  
Vol 361-363 ◽  
pp. 320-323 ◽  
Author(s):  
Dong Mei Liu ◽  
Geoffrey Michael Evans ◽  
Qing Lin He

Film flotation is a process which consumes much lower energy than mechanical cells. The extended film flotation technique is to separate mineral mixtures by different critical impact velocities. In this study the maximum penetration depth of a particle at its critical condition was investigated experimentally and theoretically. Experiments were performed using spherical glass beads of different diameters and hydrophobicities and different liquids. The penetration depth at critical condition was recorded and measured using high speed video camera. Buckingham’s PI theorem was applied to analyse the dimensionless groups, and then an empirical correlation for penetration depth was obtained by partial least squares method. It was found that the prediction results of the empirical equation were in good agreement with the measurements. Also, the influence factors were analysed. It was noticed that the hydrophobicities of particle and particle-liquid density ratio had most significant effects on the penetration depth.


Author(s):  
Anastasia V. Massold ◽  
◽  
Dzhamil U. Dumbolov ◽  
Alexander V. Dedov ◽  
◽  
...  

When deploying a temporary fuel storage warehouse, the primary source of soil contamination by oil products is technological losses related to the leakage of isolation valves. To protect the soil from contamination, containers are placed on a layer of sand. The thickness of the sand layer depends on the volume of possible losses. The purpose of the work is to model the depth of diesel fuel penetration into the protective layer of sand bed. The method of performing the experiment imitated a high rate of fuel penetration in the form of droplets onto the protective layer. The article considers the mechanism of fuel penetration into sand and factors, determining the penetration depth. It is established that the mechanism of fuel penetration into the protective layer has two stages, on each of which the penetration depth and rate of fuel distribution are different. The maximum penetration depth is reached on the first stage and depends on the quantity of fuel. The author developed the model, which allows the determination of the thickness of the sand bed protective layer with known granulometric particle composition necessary for the prevention of diesel fuel penetration into soil.


2010 ◽  
Vol 58 (4) ◽  
pp. 245-260 ◽  
Author(s):  
M. Emiroglu

Estimating Flow Characteristics of Different Weir Types and Optimum Dimensions of Downstream Receiving PoolThis paper presents the results of a laboratory study on the flow characteristics of sharp-crested weirs, broad-crested weirs, and labyrinth weirs. The variation of the maximum bubble penetration depth for different weir types is investigated depending on overfall jet expansion, discharge, and drop height. Moreover, most efficient depth, length and width of the downstream receiving pool in an open channel system are studied by considering the penetration depth, overfall jet expansion, jet trajectory and the bubble zone. The results show that overfall jet expansion at the labyrinth weirs is significantly wider than the rectangular sharp-crested weirs and the trapezoidal sharp-crested weir. It is demonstrated that the labyrinth weirs have the lowest values of bubble penetration depth among the weirs tested. Furthermore, it is found that the rectangular and the trapezoidal weirs are observed to have the highest bubble penetration depth among all weirs. Consequently, empirical equations are obtained for predicting the maximum penetration depth of bubbles, trajectory of free overfall nappe, jet expansion of free overfall nappe, and the length of the bubble zone.


Sign in / Sign up

Export Citation Format

Share Document