Use of Network Analyzer and Coaxial Probe to Determine Complex Permittivity

1990 ◽  
Vol 189 ◽  
Author(s):  
David Blackham

ABSTRACTA vector network analyzer combined with an open ended coaxial probe provides a way to make non-destructive measurements of complex permittivity. These measurements can be made on both solids and liquids.Many authors have done work on using an open ended coaxial line for making these measurements[1][2][3]. They have presented different techniques for modelling the coaxial probe. This paper does not focus on the area of modelling, but deals instead with the use of a vector network analyzer and coaxial probe in making measurements. To enhance measurement accuracy, the technique described adapts a calibration technique currently in use in vector network analysis.An HP 8720B vector network analyzer was used for the development and measurements presented in this paper.

1992 ◽  
Vol 269 ◽  
Author(s):  
David Blackham

ABSTRACTThe vector network analyzer readily lends itself to a variety of techniques for measuring material properties. The open-ended coaxial probe is one technique that allows swept frequency measurements of permittivity. The open-ended coaxial probe technique requires little or no sample preparation and can make non-destructive measurements on a variety of materials. It is especially suited for materials in liquid or semi-solid form. An understanding of network analyzer calibration and the coaxial probe model provides insight into calibration techniques that minimize systematic errors. This understanding also.facilitates the extension of measurement conditions beyond normal measurement constraints leading to a simple procedure which provides a first order correction of perturbations to the systematic errors.


2021 ◽  
Vol 73 (01) ◽  
pp. 48-49
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 199941, “Interpretation of Electromagnetic-Wave Penetration and Absorption for Different Reservoir Mineralogy - Quartz-Rich, Limestone-Rich, and Clay-Rich - and at High- and Low-Water Saturation Values for a Bitumen Reservoir,” by Matthew Morte, SPE, Hasan Alhafidh, SPE, and Berna Hascakir, SPE, Texas A&M University, prepared for the 2020 SPE Canada Heavy Oil Conference, originally scheduled to be held in Calgary, 18–19 March. The paper has not been peer reviewed. Interpretation of logging data generated through electromagnetic (EM) waves or determination of EM-wave propagation in a medium as an enhanced-oil-recovery (EOR) method are not easy tasks. The complete paper aims to identify the role of different geological settings with different types of fluid saturations in the response of EM-wave propagation and absorption. Several correlations were created in this study and can be used to better interpret the reservoir mineralogy and fluid saturation as a response to EM-wave logging. Moreover, these results can be used to estimate the effective area (penetration depth) of EM waves as an EOR method. Experimental Procedure Complex permittivity of synthesized rock samples was recorded by means of a vector network analyzer as the source and a dielectric probe kit as the transmitter. The dielectric probe behaves as both the transmitter and receiver simultaneously by measuring the proportion of the reflected wave. The dielectric probe is capable of measuring both the solid interface, as is the case with the synthesized reservoir rock, and fluids. The output of the vector network analyzer is both the dielectric constant, defined to be the real-portion complex permittivity, and the loss index, defined to be the imaginary portion. The loss tangent is a parameter that describes the overall efficacy of the material as a microwave absorber with higher values corresponding to higher heat generation in the reservoir. Reservoir properties of interest are isolated by taking advantage of experimentally defined synthesized cores. Variable properties are achieved by introducing a known quantity of specified materials to ensure control over the outcome of representative reservoir rock. Samples are an unconsolidated mixture of both the skeletal frame (rock matrix) as well as the pore space. The rock matrix is comprised of a systematic and stepwise variability of quartz sand, limestone sand, and kaolinite clay or bentonite clay. The fraction of each introduced mineral is manipulated to isolate the contribution of the individual components. The weights of the introduced constituents are calculated to result in a synthetic rock matrix with the desired rock mineralogy. The first batch of synthesized cores consisted of 75 mixtures. The remainder of the contrived cores were limestone. A separate 20 experiments were performed to account for the presence of both pore-filling and swelling clays, namely kaolinite and bentonite, respectively. Compaction and blending of the cores were performed by hand; homogenization of the mixture was ensured by thorough mixing.


10.14311/882 ◽  
2006 ◽  
Vol 46 (5) ◽  
Author(s):  
R. Zajíček ◽  
J. Vrba ◽  
K. Novotný

This paper describes a method for determining the dielectric constant of a biological tissue. A suitable way to make a dielectric measurement that is nondestructive and noninvasive for the biological substance and broadband at the frequency range of the network analyzer is to use a reflection method on an open ended coaxial line. A coaxial probe in the frequency range of the network analyzer from 17 MHz to 2 GHz is under investigation and also a calibration technique and the behavior of discrete elements in an equivalent circuit of an open ended coaxial line. Information about the magnitude and phase of the reflection coefficient on the interface between a biological tissue sample and a measurement probe is modeled with the aid of an electromagnetic field simulator. The numerical modeling is compared with real measurements, and a comparison is presented. 


2019 ◽  
Vol 4 ◽  
pp. 39-48 ◽  
Author(s):  
Vincent Guihard ◽  
Frédéric Taillade ◽  
Jean-Paul Balayssac ◽  
Barthélémy Steck ◽  
Julien Sanahuja

The study presents the development of a new two-dimensional FEM numerical model describing the operation of two large open-ended coaxial probes designed to investigate the permittivity of concrete, and its constituents. This numerical simulation, combined with a capacitive approach describing the behaviour of the probes, enabled to prove the suitability of such device to determine the permittivity of dispersive dielectrics. Finding back the permittivity of a specified material by calculation of the S parameters, change of the reference plane and use of the capacitive model is the key to the proof. Measurements performed onto different materials show good similarities with the numerical simulations. Special considerations are mentioned concerning the size of the probe and its ability to measure the permittivity of heterogeneous materials made of large inclusions. Combination of such numerical tool and measuring device can be used as a non-destructive testing technique to assess the near surface permittivity of concrete structures or as a calibration technique for GPR measurements.


Sign in / Sign up

Export Citation Format

Share Document