Formation of Titanium Silicide by Multiple Arsenic Implantations and Ion Beam Mixing

1991 ◽  
Vol 224 ◽  
Author(s):  
Po-Ching Chen ◽  
Jian-Yang Lin ◽  
Huey-Liang Hwang

AbstractTitanium silicide was formed on the top of Si wafers by arsenic ion beam mixing and rapid thermal annealing. Three different arsenic-ion mixing conditions were examined in this work. The sheet resistance, residue As concentration post annealing and TiSi2 phase were characterized by using the* four-point probe, RBS and electron diffraction, respectively. TiSi2 of C54 phase was identified in the doubly implanted samples. The thickness of the Ti silicide and the TiSi2/Si interface were observed by the cross-sectional TEM.

1986 ◽  
Vol 76 ◽  
Author(s):  
G. A. Mattiussi ◽  
J. L. Whitton ◽  
A. A. Naem ◽  
V. Q. Ho

ABSTRACTIon beam mixing has been used to form layers of titanium disilicide on Si wafers. Doses of Ge+ up to 1×1016 ions/cm2 were implanted at 140 keV through 51 nm of sputtered Ti. The substrate was held at different temperatures; 150°C, 300°C and 400°C. In addition, some samples were processed without temperature control. Two rapid thermal annealing cycles were used, 800°C for 10 s and 650°C for 50 s in an N2 ambient to form stoichiometric TiSi2. As-implanted samples showed an increase in the number of mixed Ti and Si atoms with higher implant temperature and larger dose. In addition, a thin layer with a Ti/Si ratio of 1:1 as seen in some samples indicating possible TiSi phase formation. Lower implant temperatures, higher doses and higher anneal temperatures all produced greater TiSi2 thicknesses. Ion beam mixing yields thicker. silicide layers than those formed without mixing. The silicide interface smoothness was improved by ion beam mixing although some residual implant damage was observed after annealing. The implanted Ge+ accumulated below the silicide/Si interface and in the surface Ti oxide layer.


2002 ◽  
Vol 716 ◽  
Author(s):  
G.Z. Pan ◽  
E.W. Chang ◽  
Y. Rahmat-Samii

AbstractWe comparatively studied the formation of ultra thin Co silicides, Co2Si, CoSi and CoSi2, with/without a Ti-capped and Ti-mediated layer by using rapid thermal annealing in a N2 ambient. Four-point-probe sheet resistance measurements and plan-view electron diffraction were used to characterize the silicides as well as the epitaxial characteristics of CoSi2 with Si. We found that the formation of the Co silicides and their existing duration are strongly influenced by the presence of a Ti-capped and Ti-mediated layer. A Ti-capped layer promotes significantly CoSi formation but suppresses Co2Si, and delays CoSi2, which advantageously increases the silicidation-processing window. A Ti-mediated layer acting as a diffusion barrier to the supply of Co suppresses the formation of both Co2Si and CoSi but energetically favors directly forming CoSi2. Plan-view electron diffraction studies indicated that both a Ti-capped and Ti-mediated layer could be used to form ultra thin epitaxial CoSi2 silicide.


1992 ◽  
Vol 268 ◽  
Author(s):  
Ikasko C. Dehm ◽  
H. Ryssel

ABSTRACTIn this study, the critical dose for ion-beam mixing of Co and Si with Ge-ions which results in homogenous CoSi2 formation after rapid thermal annealing was found. For this purpose, Co was deposited by sputtering on chemically cleaned, <100>-oriented Si and subsequently mixed with Ge ions at doses in the range of 2. 1014 to 1. 1015 cm−2. Silicidation was performed in a rapid thermal annealing (RTA) system at temperatures between 700° and 100°C. Rutherford backscattering measurements showed that annealing at 700°C results in an incomplete reaction when ion-beam mixing at a dose of 2.1014 cm−2 or no ion-beam mixing was performed. After annealing at 1000°C, TEM samples revealed an inhomogeneous CoSi2 film consisting of large grains embedded in the Si. Mixing at doses at or above 5.1014 cm−2 and subsequent RTA at 700°C resulted in uniform CoSi2 layers. Higher annealing temperatures cause larger grains and resistivity values as low as 18 μΩcm. Therefore, we demonstrated that the critical dose leading to complete formation of smooth CoSi2 films with abrupt interface is 5.1014 cm−2 which is nearly the same value as the amorphization dose of Ge in Si.


1988 ◽  
Vol 52 (11) ◽  
pp. 877-879 ◽  
Author(s):  
Y. H. Ku ◽  
S. K. Lee ◽  
D. K. Shih ◽  
D. L. Kwong ◽  
C‐O Lee ◽  
...  

1996 ◽  
Vol 441 ◽  
Author(s):  
Wen-Jie Qi ◽  
Zhi-Sheng Wang ◽  
Zhi-Guang Gu ◽  
Guo-Ping Ru ◽  
Guo-Bao Jialig ◽  
...  

AbstractThe ion-beam-sputtered polycrystalline SiGe film and its doping properties have been studied. Boron and phosphorus have been doped into the sputtered poly-SiGe film by ion implantation and diffusion. To activate the implanted impurities, both rapid thermal annealing and fiirnace annealing have been used. The electrical measurements show that boron and plhosphorus can be doped into sputtered SiGe films and effectively activated by both ion implantation with post-annealing and diffiision. Hall mobilities as high as 31 cm2/V-s and 20 cm2/V.s have been obtained in B-difflhsed and P-diffused SiGe films, respectively. The x-ray diffraction spectra of the sputtered Sifie filhn show its typical polycrystalline structure with (111), (220) and (311) as the preferential orientations.


1990 ◽  
Vol 181 ◽  
Author(s):  
L. Niewöhner ◽  
D. Depta

ABSTRACTFormation of CoSi2 using the technique of ion implantation through metal (ITM) and subsequent appropriate rapid thermal annealing is described. Silicide morphology is investigated by SEM and TEM. SIMS and RBS are used to determine dopant distribution and junction depth. Self-aligned CoSi2/n+p diodes produced in this technique are presented.


Sign in / Sign up

Export Citation Format

Share Document