Atomic Oxygen Plasma Effects on Cvd Deposited Diamond-Like Carbon Films

1991 ◽  
Vol 236 ◽  
Author(s):  
Jeffrey S. Hale ◽  
R.A. Synowicki ◽  
S. Nafis ◽  
John A. Woollam

AbstractCVD deposited diamond-like carbon (DLC) films have been studied for possible use as a secondary standard for Low Earth Orbit materials degradation. Samples of various thicknesses have been exposed to a simulated Low Earth Orbit atomic oxygen (AO) environment using a plasma asher. Mass loss measurements indicate that DLC degrades at a rate of 0.7 mg/hr which is two to three times the rate of currently used Kapton samples which degrade at a rate of.3 mg/hr. Thickness measurements show that DLC thins at a rate of 77 Angstroms/min. Since DLC is not as susceptible to environmental factors such as moisture absorption, it could potentially provide more accurate measurements of AO fluence on short space flights. Adhesion of DLC films to both fused silica and crystalline silicon substrates has been studied under thermal cycling conditions. Film adhesion to fused silica can be enhanced by sputtering a thin layer of silicon dioxide onto the substrate prior to deposition. In addition to the above, the index of refraction and extinction coefficient of various thicknesses of DLC films has been characterized by Variable Angle Spectroscopic Ellipsometry.

1991 ◽  
Vol 235 ◽  
Author(s):  
Jeffrey S. Hale ◽  
R. A. Synowicki ◽  
S. Nails ◽  
John A. Woollam

ABSTRACTCVD deposited diamond-like carbon (DLC) films have been studied for possible use as a secondary standard for Low Earth Orbit materials degradation. Samples of various thicknesses have been exposed to a simulated Low Earth Orbit atomic oxygen (AO) environment using a plasma asher. Mass loss measurements indicate that DLC degrades at a rate of 0.7 mg/hr which is two to three times the rate of currently used Kapton samples which degrade at a rate of.3 mg/hr. Thickness measurements show that DLC thins at a rate of 77 Angstroms/min. Since DLC is not as susceptible to environmental factors such as moisture absorption, it could potentially provide more accurate measurements of AO fluence on short space flights. Adhesion of DLC films to both fused silica and crystalline silicon substrates has been studied under thermal cycling conditions. Film adhesion to fused silica can be enhanced by sputtering a thin layer of silicon dioxide onto the substrate prior to deposition. In addition to the above, the index of refraction and extinction coefficient of various thicknesses of DLC films has been characterized by Variable Angle Spectroscopic Ellipsometry.


2000 ◽  
Vol 12 (1) ◽  
pp. 43-52 ◽  
Author(s):  
John W Connell

Thin films of phenylphosphine oxide-containing polymers were exposed to low Earth orbit aboard a space shuttle flight (STS-85) as part of flight experiment designated Evaluation of Space Environment and Effects on Materials (ESEM). This flight experiment was a cooperative effort between the NASA Langley Research Center (LaRC) and the National Space Development Agency of Japan (NASDA). The thin-film samples described herein were part of an atomic oxygen exposure (AOE) experiment and were exposed to primarily atomic oxygen (∼1×1019 atoms cm−2). The thin-film samples consisted of three phosphine oxide-containing polymers (arylene ether, benzimidazole and imide). Based on post-flight analyses using atomic force microscopy, x-ray photo-electron spectroscopy and weight loss data, it was found that the exposure of these materials to atomic oxygen (AO) produces a phosphorus oxide layer on the surface of the samples. Earlier work has shown that this layer provides a barrier towards further attack by AO. Consequently, these materials do not exhibit linear erosion rates which is in contrast with most organic polymers. Qualitatively, the results obtained from these analyses compare favourably with those obtained from samples exposed to AO and/or an oxygen plasma in ground-based exposure experiments. The results of the low Earth orbit AO exposure on these materials will be compared with those of ground-based exposure to AO.


2013 ◽  
Vol 423-426 ◽  
pp. 756-761
Author(s):  
Li Jun Sang ◽  
Qiang Chen ◽  
Zhong Wei Liu ◽  
Zheng Duo Wang

Diamond-like carbon films (DLC) were deposited on single crystalline silicon surface under different RF negative bias in microwave electron cyclotron resonance (ECR) plasma source. The chemical structure and morphology were characterized by Fourier transformation infrared spectroscopy (FTIR) and atomic force microscopy (AFM). The friction coefficient of films was measured to examine the film property later. The results show that the smooth and compact deposited films were typical hydrogenated diamond-like carbon with CHn stretching vibration in 2800-3000cm-1. It is noticed that with the increase of RF bias on the substrate the peak intensity for C-H stretching vibration in spectrum between 2800cm-1~3000cm-1 increased at the beginning and then decreased, which caused the friction coefficient of the film being smaller and then larger in reverse. In 50W RF biased power one can obtain the maximum-CHn peak intensity and the minimum friction coefficient.


1998 ◽  
Author(s):  
J. A. Schultz ◽  
K. Eipers-Smith ◽  
K. Waters ◽  
S. Schultz ◽  
M. Sterling ◽  
...  

2021 ◽  
pp. 1-10
Author(s):  
Carlos A. Maldonado ◽  
Andrew D. Ketsdever ◽  
John D. Williams

Sign in / Sign up

Export Citation Format

Share Document