Three Dimensional Printing: Surface Finish and Microstructure of Rapid Prototyped Components

1991 ◽  
Vol 249 ◽  
Author(s):  
A. Lauder ◽  
M.J. Cima ◽  
E. Sachs ◽  
T. Fan

ABSTRACTThree Dimensional Printing is a process for rapid prototyping of functional components. Thin layers of powder are bound in selected areas by ink-jet printing of a liquid binder. Layers are added sequentially until a three dimensional part is completed. The unbound powder is then removed. The raster scan pattern and layering used in forming has an observable effect on the surface finish and microstructure of the part, as does the chemistry of the particular materials system used. Important phenomena include ballistic interaction of the jet with the powder bed and wicking of the binder. Process parameters such as layer height, flow rate, and powder density were studied. Microstructural examination of the printed components is also reported.

1998 ◽  
Vol 542 ◽  
Author(s):  
S. A. Uhland ◽  
R. K. Holman ◽  
M. J. Cima ◽  
E. Sachs ◽  
Y. Enokido

AbstractThe Three-Dimensional Printing (3DP™) process has been modified to incorporate colloidal science for the fabrication of fine ceramic parts. Complex shaped alumina and silicon nitride components have been formed directly from 3-dimensional CAD files using submicron powders. Parts were built using a sequential layering process of the ceramic slurry followed by ink jet printing of a binder system. A well dispersed slurry and optimized printing parameters are required to form a uniform powder bed with a high green density. Liquid-powder bed interactions affect the geometry and internal structure of the component. The redispersion of the unprinted powder bed is critical in order to retrieve the printed components. The slurry and powder bed chemistry are the major factors controlling powder bed redispersion. The process is generic and can be readily adapted for new materials systems. Our research is currently focused on the fabrication of dielectric RF filters. Preliminary results have demonstrated the ability to successfully fabricate cylindrical RF resonators.


2011 ◽  
Vol 701 ◽  
pp. 1-8
Author(s):  
Rupinder Singh

Three dimensional printing (3DP) as rapid casting (RC) solutions has transformed over centuries from black art to science, but the metallurgical impinge on the process responsible for change in mechanical properties (like: surface finish, hardness, dimensional stability etc.) are still disputed. The purpose of the present research paper is to review metallurgical affect of 3DP based RC solution. The result of study suggests that prominent reason found to be responsible for improving the mechanical properties of RC is control of heat transfer rate while solidification (thus reducing dendrite formation).


2021 ◽  
pp. 009524432110472
Author(s):  
Ans Al Rashid ◽  
Sikandar Abdul Qadir ◽  
Muammer Koç

Fused Filament Fabrication (FFF) has been the most widely used three-dimensional printing (3DP) technology due to its cost-effectiveness, easy application, and material readiness. FFF, to date, has been used to fabricate polymer components for rapid prototyping and increasingly for some end-user applications. Thus, there is a pressing need to optimize 3DP process parameters for FFF materials to achieve higher dimensional accuracy, especially in functional components for final use applications. Therefore, to ensure desired geometries with reasonable accuracy, precise measurements are required to validate the FFF process’s dimensional capability under different process conditions. This study presents the dimensional measurement and statistical analysis to evaluate the effect of printing materials, speed, and layer heights on dimensional accuracy and repeatability of the commercial FFF process. A benchmark part model was designed with different external and internal features commonly used in manufacturing processes. Taguchi’s design of experiments (DOE) was employed to obtain the experiments scheme, followed by the 3DP, dimensional measurement, and analysis of 3DP samples. Results revealed polylactic acid (PLA) material provided better dimensional control in most of the features. Higher printing speeds and layer heights were found optimum for external features/protrusions, whereas lower-to-medium speeds and layer heights were more appropriate for the fabrication of internal features.


1992 ◽  
Vol 114 (4) ◽  
pp. 481-488 ◽  
Author(s):  
E. Sachs ◽  
M. Cima ◽  
P. Williams ◽  
D. Brancazio ◽  
J. Cornie

Three Dimensional Printing is a process for the manufacture of tooling and functional prototype parts directly from computer models. Three Dimensional Printing functions by the deposition of powdered material in layers and the selective binding of the powder by “ink-jet” printing of a binder material. Following the sequential application of layers, the unbound power is removed, resulting in a complex three-dimensional part. The process may be applied to the production of metal, ceramic, and metal-ceramic composite parts. An experiment employing continuous-jet ink-jet printing technology has produced a three-dimensional ceramic part constructed of 50 layers, each 0.005 in. thick. The powder is alumina and the binder is colloidal silica. The minimum feature size is 0.017 in., and features intended to be 0.5000 in. apart average 0.4997 in. apart in the green state and 0.5012 in. apart in the cured state, with standard deviations of 0.0005 in. and 0.0018 in., respectively. Future research will be directed toward the direct fabrication of cores and shells for metal casting, and toward the fabrication of porous ceramic preforms for metal-ceramic composite parts.


2009 ◽  
Vol 00 (00) ◽  
pp. 090730035508060-7
Author(s):  
Deng-Guang Yu ◽  
Chris Branford-White ◽  
Yi-Cheng Yang ◽  
Li-Min Zhu ◽  
Edward William Welbeck ◽  
...  

2020 ◽  
Vol 13 (12) ◽  
pp. e239286
Author(s):  
Kumar Nilesh ◽  
Prashant Punde ◽  
Nitin Shivajirao Patil ◽  
Amol Gautam

Ossifying fibroma (OF) is a rare, benign, fibro-osseous lesion of the jawbone characterised by replacement of the normal bone with fibrous tissue. The fibrous tissue shows varying amount of calcified structures resembling bone and/or cementum. The central variant of OF is rare, and shows predilection for mandible among the jawbone. Although it is classified as fibro-osseous lesion, it clinically behaves as a benign tumour and can grow to large size, causing bony swelling and facial asymmetry. This paper reports a case of large central OF of mandible in a 40-year-old male patient. The lesion was treated by segmental resection of mandible. Reconstruction of the surgical defect was done using avascular fibula bone graft. Role of three-dimensional printing of jaw and its benefits in surgical planning and reconstruction are also highlighted.


Author(s):  
Leandro Ejnisman ◽  
Bruno Gobbato ◽  
Andre Ferrari de França Camargo ◽  
Eduardo Zancul

Sign in / Sign up

Export Citation Format

Share Document