Interaction Between Co and SiO2 During Ion-Beam Mixing and Rapid Thermal Annealing

1992 ◽  
Vol 260 ◽  
Author(s):  
C. Dehm ◽  
I. Kasko ◽  
E. P. Burte ◽  
H. Ryssel

ABSTRACTFor the application in self-aligned processes, it was supposed that CoSi2 could be superior to TiSi2, since, unlike Ti, a reaction between Co and SiO2 was not observed up to now. We studied the reaction of Co and SiO2 during ion-beam mixing and rapid thermal annealing (RTA). The influences of As and Ge implantation energy and dose were investigated in the range of 50 to 200 keV and 1–1014 to 5–1015 cm2. The annealing temperature was varied between 700° C and 1100°C.It could be demonstrated that the Co concentration in SiO2 rises with increasing Ge and As energy and dose up to values of 5·1015 cm2 compared to 2·1012 cm2 in unim-planted, annealed samples. The Co profiles in SiO2 were also studied by secondary ion mass spectroscopy (SIMS) and compared with Monte-Carlo simulations indicating pure ballistic mixing. Plan-view and cross-section transmission electron microscopy (TEM) were used to examine the SiO2 surface as well as the Co-SiO2 interface. These investigations revealed that ion-beam mixing with doses at or above 5·1014 cm2 and subsequent annealing does not damage the SiO2 unlike to unimplanted, annealed samples which show a rather severe structural change of the SiO2 surface increasing with rising annealing temperatures.

1983 ◽  
Vol 23 ◽  
Author(s):  
W. Maszara ◽  
C. Carter ◽  
D. K. Sadana ◽  
J. Liu ◽  
V. Ozguz ◽  
...  

ABSTRACTLow energy, shallow BF2+ implants were carried out at room or liquid nitrogen temperature into deep pre-amorphized (100) Si for better control of the dopant profile and post-annealing structural defects. Cross sectional and angle polished plan view transmission electron microscopy were used to study the structural quality of the implanted layer, while SIMS provided a chemical profile. Four types of structural defects were observed in BF2+ implanted, pre-amorphized samples following rapid thermal annealing with a halogen lamp. An in-situ ion beam annealing and the presence of F in the Si lattice were related to the creation of the defects. Good correlations between F gettering and TEM observed defects were found to exist. Implantation of B+ into a pre-amorphized Si surface and subsequent rapid thermal annealing was found to produce a wide defect-free surface layer.


1992 ◽  
Vol 268 ◽  
Author(s):  
Ikasko C. Dehm ◽  
H. Ryssel

ABSTRACTIn this study, the critical dose for ion-beam mixing of Co and Si with Ge-ions which results in homogenous CoSi2 formation after rapid thermal annealing was found. For this purpose, Co was deposited by sputtering on chemically cleaned, <100>-oriented Si and subsequently mixed with Ge ions at doses in the range of 2. 1014 to 1. 1015 cm−2. Silicidation was performed in a rapid thermal annealing (RTA) system at temperatures between 700° and 100°C. Rutherford backscattering measurements showed that annealing at 700°C results in an incomplete reaction when ion-beam mixing at a dose of 2.1014 cm−2 or no ion-beam mixing was performed. After annealing at 1000°C, TEM samples revealed an inhomogeneous CoSi2 film consisting of large grains embedded in the Si. Mixing at doses at or above 5.1014 cm−2 and subsequent RTA at 700°C resulted in uniform CoSi2 layers. Higher annealing temperatures cause larger grains and resistivity values as low as 18 μΩcm. Therefore, we demonstrated that the critical dose leading to complete formation of smooth CoSi2 films with abrupt interface is 5.1014 cm−2 which is nearly the same value as the amorphization dose of Ge in Si.


1985 ◽  
Vol 52 ◽  
Author(s):  
C. Ho ◽  
R. Kwor ◽  
C. Araujo ◽  
J. Gelpey

ABSTRACTThe rapid thermal annealing (RTA) of p+n and n+p diodes, fabricated by the LOCOS process, and its subsequent effects on junction leakage current, junction depth and dopant activation were investigated. The reverse bias diode leakage currents of implanted Si <100> samples (As+: 60 KeY, 5×1014 5×1015 cm−2, B+: 25 KeV, l×1014, l×1015 cm−2 and BF2+: 45 KeV, 1×1015cm−2 ) were measured as functions of annealing temperature, and dwell time. The annealing was performed using an Eaton RTA system (Nova ROA-400) at temperatures ranging from 950 °C to 1150 °C. Annealing times ranged from 0.2 sec. to 10 sec. The results from the diode leakage current analysis are correlated with those from Secondary Ion Mass Spectroscopy (SIMS) and differential Hall measurements. The reverse-biased leakage currents from the RTA-treated samples are compared with those from furnace-annealed samples.


1991 ◽  
Vol 224 ◽  
Author(s):  
Po-Ching Chen ◽  
Jian-Yang Lin ◽  
Huey-Liang Hwang

AbstractTitanium silicide was formed on the top of Si wafers by arsenic ion beam mixing and rapid thermal annealing. Three different arsenic-ion mixing conditions were examined in this work. The sheet resistance, residue As concentration post annealing and TiSi2 phase were characterized by using the* four-point probe, RBS and electron diffraction, respectively. TiSi2 of C54 phase was identified in the doubly implanted samples. The thickness of the Ti silicide and the TiSi2/Si interface were observed by the cross-sectional TEM.


1988 ◽  
Vol 52 (11) ◽  
pp. 877-879 ◽  
Author(s):  
Y. H. Ku ◽  
S. K. Lee ◽  
D. K. Shih ◽  
D. L. Kwong ◽  
C‐O Lee ◽  
...  

1990 ◽  
Vol 181 ◽  
Author(s):  
L. Niewöhner ◽  
D. Depta

ABSTRACTFormation of CoSi2 using the technique of ion implantation through metal (ITM) and subsequent appropriate rapid thermal annealing is described. Silicide morphology is investigated by SEM and TEM. SIMS and RBS are used to determine dopant distribution and junction depth. Self-aligned CoSi2/n+p diodes produced in this technique are presented.


1985 ◽  
Vol 57 (6) ◽  
pp. 1890-1894 ◽  
Author(s):  
B‐Y. Tsaur ◽  
C. K. Chen ◽  
C. H. Anderson ◽  
D. L. Kwong

1985 ◽  
Vol 47 (7) ◽  
pp. 688-691 ◽  
Author(s):  
D. L. Kwong ◽  
D. C. Meyers ◽  
N. S. Alvi ◽  
L. W. Li ◽  
E. Norbeck

Sign in / Sign up

Export Citation Format

Share Document