Non-Contact, No Wafer Preparation Deep Level Transient Spectroscopy (DlTS) Based on Surface Photovoltage (SPV)

1992 ◽  
Vol 261 ◽  
Author(s):  
Jacek Lagowski ◽  
Piotr Edelman ◽  
Mark Dexter

ABSTRACTThis work reports on the theoretical modeling and experimental investigation of isothermal SPV-DLTS based on the rate window concept. Experimental implementation of the technique is done using computer analysis of the SPV transients after ceasing the illumination. The transient involves two processes – a recombination of excess minority carriers and a thermal emission of carriers trapped by surface states and bulk defects. The later process is the key one for deep level defect determination.The upper limit for the measurable deep level emission rate is provided by the recombination lifetime. This limit often exceeds, by orders of magnitude, the standard 103 s−1 limit in capacitance DLTS. The sensitivity of SPV-DLTS is of the same order as that of optical capacitance DLTS.

1991 ◽  
Vol 69 (3-4) ◽  
pp. 407-411 ◽  
Author(s):  
T. Bretagnon ◽  
A. Jean ◽  
P. Silvestre ◽  
S. Bourassa ◽  
R. Le Van Mao ◽  
...  

The deep-level transient spectroscopy technique was applied to the study of deep electron traps existing in n-type GaAs epitaxial layers that were prepared by the close-spaced vapor transport technique using three kinds of sources (semi-insulator-undoped, Zn-doped and Si-doped GaAs). Two midgap electron traps labelled ELCS1 and EL2 were observed in all layers regardless of the kind of source used. In addition, the effect of the electric field on the emission rate of ELCS1 is discussed and its identification to ETX2 and EL12 is suggested.


2021 ◽  
Vol 21 (3) ◽  
pp. 1904-1908
Author(s):  
Woo-Young Son ◽  
Jeong Hyun Moon ◽  
Wook Bahng ◽  
Sang-Mo Koo

We investigated the effect of a sacrificial AlN layer on the deep energy level states of 4H-SiC surface. The samples with and without AlN layer have been annealed at 1300 °C for 30 minutes duration using a tube furnace. After annealing the samples, the changes of the carbon vacancy (VC) related Z1/2 defect characteristics were analyzed by deep level transient spectroscopy. The trap energy associated with double negative acceptor (VC(2-/0)) appears at ˜0.7 eV and was reduced from ˜0.687 to ˜0.582 eV in the sacrificial AlN layer samples. In addition, the capture cross section was significantly improved from ˜2.1×10-14 to ˜3.8×10−16 cm−2 and the trap concentration was reduced by approximately 40 times.


1988 ◽  
Vol 53 (12) ◽  
pp. 1059-1061 ◽  
Author(s):  
D. Liu ◽  
T. Zhang ◽  
R. A. LaRue ◽  
J. S. Harris ◽  
T. W. Sigmon

Author(s):  
Н.А. Ярыкин ◽  
В.Б. Шуман ◽  
Л.М. Порцель ◽  
А.Н. Лодыгин ◽  
Ю.А. Астров ◽  
...  

AbstractElectrically active centers in n -type magnesium-doped silicon crystals are studied by deep-level transient spectroscopy (DLTS). Magnesium is introduced by diffusion from a metal film on the surface at 1100°C. It is found that two levels with a similar concentration of ~6 × 10^14 cm^–3 dominate in the DLTS spectrum; the value approximately corresponds to the interstitial magnesium (Mg_ i ) concentration expected from diffusion conditions and published data on the Hall effect. The dependence of the electron emission rate from these levels on the electric-field strength agrees qualitatively with the Poole–Frenkel effect, which indicates the donor nature of both levels, although the absolute value of the effect differs from theoretical value. The activation energies of these levels found by the extrapolation of emission rates measured at various temperatures to zero field are 112 and 252 meV, which coincides within the accuracy with energies of ground states of the first and second donor levels of Mg determined previously from optical absorption. Thus, it is shown that when using high-quality initial material and the selected diffusion mode, interstitial magnesium atoms are the dominant centers with levels in the upper half of the band gap.


2016 ◽  
Vol 25 (6) ◽  
pp. 067305
Author(s):  
Qing Zhu ◽  
Xiao-Hua Ma ◽  
Wei-Wei Chen ◽  
Bin Hou ◽  
Jie-Jie Zhu ◽  
...  

2013 ◽  
Vol 740-742 ◽  
pp. 633-636 ◽  
Author(s):  
Birgit Kallinger ◽  
Patrick Berwian ◽  
Jochen Friedrich ◽  
Mathias Rommel ◽  
Maral Azizi ◽  
...  

4H-SiC homoepitaxial layers with different thicknesses from 12.5 µm up to 50 µm were investigated by microwave-detected photoconductivity decay (µ-PCD), deep level transient spectroscopy (DLTS) and defect selective etching (DSE) to shed light on the influence of the epilayer thickness and structural defects on the effective minority carrier lifetime. It is shown that the effective lifetime, resulting directly from the µ-PCD measurement, is significantly influenced by the surface recombination lifetime. Therefore, an adequate correction of the measured data is necessary to determine the bulk lifetime. The bulk lifetime of these epilayers is in the order of several microseconds. Furthermore, areas with high dislocation density are correlated to areas with locally reduced effective lifetime.


Sign in / Sign up

Export Citation Format

Share Document