Dopant Dependent Extended Defect Nucleation and Growth Kinetics in Silicon During 1 Mev Electron Irradiation

1992 ◽  
Vol 262 ◽  
Author(s):  
Albert Romano-Rodriguez ◽  
Jan Vanhellemont

ABSTRACTIn this paper results of a study of electron irradiation induced extended defect generation in doped silicon is presented. The irradiations are performed in-situ with 1 MeV electrons in a high voltage transmission electron microscope. Preferential generation of extended defects is observed in certain areas of the sample which can be correlated with well defined dopant concentration levels. The defect growth kinetics is studied as a function of the irradiation temperature and dose and the type and concentration of dopant.After the first irradiation experiment some of the samples received a second electron irradiation, during which shrinkage and even complete annihilation of the previously generated defects can be observed. The observed results are interpreted on the base of point defect reactions.


Micron ◽  
1999 ◽  
Vol 30 (1) ◽  
pp. 21-32 ◽  
Author(s):  
F.M. Ross ◽  
P.A. Bennett ◽  
R.M. Tromp ◽  
J. Tersoff ◽  
M. Reuter




2014 ◽  
Vol 50 (17) ◽  
pp. 2104 ◽  
Author(s):  
Robert L. Sacci ◽  
Nancy J. Dudney ◽  
Karren L. More ◽  
Lucas R. Parent ◽  
Ilke Arslan ◽  
...  


2002 ◽  
Vol 17 (8) ◽  
pp. 2085-2094 ◽  
Author(s):  
H. P. Ng ◽  
A. H. W. Ngan

The grain growth kinetics and ordering behavior of direct-current magnetron sputter-deposited Ni75at.%Al25at.% alloy films were investigated using in situ isothermal annealing in a transmission electron microscope. Both normal and abnormal grain growth modes were observed. The normal grain growth kinetics under isothermal heating from 300 to 700 °C were found to comply with the Burke law d = K/dn−1, where d is grain size and K and n are constants with respect to time. The grain boundary mobility parameter K was found to obey an Arrehnius rate law with an apparent activation energy of 1.6 eV, and n was found to increase gradually from 5.2 at 300 °C to 8.7 at 700 °C. Abnormal grain growth occurred at 500 °C or higher, and grain coalescence was identified as an important operative mechanism. It was also observed that the initially as-deposited state of the films was crystalline with a disordered face-centered-cubic structure, but ordering into the equilibrium L12 intermetallic structure followed from annealing at temperatures above approximately 500 °C.



2002 ◽  
Vol 717 ◽  
Author(s):  
Renata A. Camillo-Castillo ◽  
Kevin. S. Jones ◽  
Mark E. Law ◽  
Leonard M. Rubin

AbstractTransient enhanced diffusion (TED) is a challenge that the semi-conductor industry has been faced with for more than two decades. Numerous investigations have been conducted to better understand the mechanisms that govern this phenomenon, so that scale down can be acheived. {311} type defects and dislocation loops are known interstitial sources that drive TED and dopants such as B utilize these interstitials to diffuse throughout the Si lattice. It has been reported that a two-step anneal on Ge preamorphized Si with ultra-low energy B implants has resulted in shallower junction depths. This study examines whether the pre-anneal step has a measurable effect on the end of range defects. Si wafers were preamorphized with Ge at 10, 12, 15, 20 and 30keV at a dose of 1x1015cm-2 and subsequently implanted with 1x1015cm-2 1keV B. Furnace anneals were performed at 450, 550, 650 and 750°C; the samples were then subjected to a spike RTA at 950°C. The implant damage was analyzed using Quantitative Transmission Electron Microscopy (QTEM). At the low energy Ge preamorphization, little damage is observed. However at the higher energies the microstructure is populated with extended defects. The defects evolve into elongated loops as the preanneal temperature increases. Both the extended defect density and the trapped interstitial concentration peak at a preanneal temperature of 550°C, suggesting that this may be an optimal condition for trapping interstitials.



2016 ◽  
Vol 49 (5) ◽  
pp. 1459-1470 ◽  
Author(s):  
Zezhong Zhang ◽  
Tianyu Liu ◽  
Andrew E. Smith ◽  
Nikhil V. Medhekar ◽  
Philip N. H. Nakashima ◽  
...  

Voids can significantly affect the performance of materials and a key question is how voids form and evolve. Voids also provide a rare opportunity to study the fundamental interplay between surface crystallography and atomic diffusion at the nanoscale. In the present work, the shrinkage of voids in aluminium from 20 to 1 nm in diameter throughin situannealing is imaged in a transmission electron microscope. It is found that voids first shrink anisotropically from a non-equilibrium to an equilibrium shape and then shrink while maintaining their equilibrium shape until they collapse. It is revealed that this process maximizes the reduction in total surface energy per vacancy emitted. It is also observed that shrinkage is quantized, taking place one atomic layer and one void facet at a time. By taking the quantization and electron irradiation into account, the measured void shrinkage rates can be modelled satisfactorily for voids down to 5 nm using bulk diffusion kinetics. Continuous electron irradiation accelerates the shrinkage kinetics significantly; however, it does not affect the energetics, which control void shape.



1985 ◽  
Vol 52 ◽  
Author(s):  
D. M. Maher ◽  
R. V. Knoell ◽  
M. B. Ellington ◽  
D. C. Jacobson

ABSTRACTThe characterization of microstructures is fundamentally important to investigations of amorphization which is induced by ion implantation and recrystallization which occurs by solid-phase, epitaxial regrowth. In this paper, microstructures of amorphized, partially regrown and fully regrown layers are described in terms of extended-defect states of the material. Initial states (i.e. amorphized) and final states (i.e. solid-phase regrown and then reordered) are defined. Transmission electron microscopy and Rutherford backscattering/ion-channeling are the analytical techniques which are used in the characterization.



Small ◽  
2010 ◽  
Vol 6 (18) ◽  
pp. 2058-2064 ◽  
Author(s):  
Christian Kallesøe ◽  
Cheng-Yen Wen ◽  
Kristian Mølhave ◽  
Peter Bøggild ◽  
Frances M. Ross


Sign in / Sign up

Export Citation Format

Share Document