Combining Molecular Dynamics and Monte Carlo Simulations to Model Chemical Vapor Deposition: Application to Diamond

1992 ◽  
Vol 278 ◽  
Author(s):  
D.W. Brenner ◽  
D.H. Robertson ◽  
R.J. Carty ◽  
D. Srivastava ◽  
B.J. Garrison

AbstractGas-surface reactions of the type that contribute to growth during the chemical vapor deposition (CVD) of diamond films are generally completed in picoseconds, well within timescales accessible by molecular dynamics (MD) simulations. For low-pressure deposition, however, the time between collisions for a surface site can be microseconds, which makes direct modeling of CVD crystal growth impossible using standard MD methods. To effectively bridge this discrepancy in timescales, the gas-surface reactions can be modeled using MD trajectories, and then this data can be used to define probabilities in a Monte Carlo algorithm where each step represents a gas-surface collision. We illustrate this approach using the reaction of atomic hydrogen with a diamond (111) surface as an example, where we use abstraction and sticking probabilities generated using classical trajectories in a simple Monte Carlo algorithm to determine the number of open sites as a function of temperature. We also include models for the thermal desorption of hydrogen that predict that growth temperatures are not restricted by the thermal loss of chemisorbed hydrogen.

Author(s):  
Lijuan Meng ◽  
Jinlian Lu ◽  
Yujie Bai ◽  
Lili Liu ◽  
Tang Jingyi ◽  
...  

Understanding the fundamentals of chemical vapor deposition bilayer graphene growth is crucial for its synthesis. By employing density functional theory calculations and classical molecular dynamics simulations, we have investigated the...


Author(s):  
Marcelo Lopes Pereira Junior ◽  
Wiliam Ferreira da Cunha ◽  
Douglas Soares Galvão ◽  
Luiz Antonio Ribeiro Junior

Recently, laser-assisted chemical vapor deposition has been used to synthesize a free-standing, continuous, and stable monolayer amorphous carbon (MAC).


2020 ◽  
Vol 32 (15) ◽  
pp. 155401 ◽  
Author(s):  
Shuai Chen ◽  
Junfeng Gao ◽  
Bharathi M Srinivasan ◽  
Gang Zhang ◽  
Viacheslav Sorkin ◽  
...  

2014 ◽  
Vol 1704 ◽  
Author(s):  
Hayley R. Osman ◽  
Saibal Mitra

ABSTRACTInitiated Chemical Vapor Deposition (iCVD) is a well-known method for depositing polymers that are used in chemical, biological, and electrical applications. It is a variation of hot filament deposition and can used to produce conformal coatings of polymer films at relatively low reaction temperatures. It is also a solventless technique in which thin polymeric films are deposited by introducing controlled ratios of monomer and initiator gasses into the reaction chamber. Low temperatures in the reaction chamber allow the deposition of polymer films on a wide variety of substrates that include biological substrates.We have simulated the growth of a monolayer of polymer films on two-dimensional surfaces using Monte Carlo simulation. We saw the formation of polymer chains over a time scale on the order of microseconds. We have assumed the substrate to be at room temperature while the reactor pressure close of 800 mTorr.The grid on which we have simulated this polymer growth is represented by a 100x100 matrix, on which a series of specialized functions are executed in each time-step, or iteration. These functions can be divided into three categories: population, translation, and polymerization.The goal of this simulation is to observe the initial growth of the iCVD surface reaction. We have obtained favorable results with the simulation and we are now looking to compare these results with experimental results for initiation growth.


2017 ◽  
Vol 122 (1) ◽  
pp. 648-661 ◽  
Author(s):  
Pitsiri Sukkaew ◽  
Emil Kalered ◽  
Erik Janzén ◽  
Olof Kordina ◽  
Örjan Danielsson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document