Microstructure and Defects in Implanted Hipox-Structures

1992 ◽  
Vol 280 ◽  
Author(s):  
N. David Theodore ◽  
Peter L. Pegler

ABSTRACTHigh-pressure oxidation of silicon (HIPOX) is one of various techniques used for electrical-isolation of semiconductor-devices on silicon substrates. The effect of HIPOX-related stresses on isolation structures is of interest because structural-defects, if formed, could electrically degrade devices. The present investigation was performed to study the origin and behavior of defects in recessed HIPOX structures. The structures were exposed to a boron implant. The experimental observations indicate that glide dislocations arise when the following features are present: (i) HIPOX, (ii) recessed edge, (iii) boron implant. The origin and behavior of the defects are modelled and explained in terms of implant-induced dislocation-sources creating glide-dislocations in the structures. The microstructure of the structures described above, and defect-modelling is presented.

Author(s):  
Peter Pegler ◽  
N. David Theodore ◽  
Ming Pan

High-pressure oxidation of silicon (HIPOX) is one of various techniques used for electrical-isolation of semiconductor-devices on silicon substrates. Other techniques have included local-oxidation of silicon (LOCOS), poly-buffered LOCOS, deep-trench isolation and separation of silicon by implanted oxygen (SIMOX). Reliable use of HIPOX for device-isolation requires an understanding of the behavior of the materials and structures being used and their interactions under different processing conditions. The effect of HIPOX-related stresses in the structures is of interest because structuraldefects, if formed, could electrically degrade devices.This investigation was performed to study the origin and behavior of defects in recessed HIPOX (RHIPOX) structures. The structures were exposed to a boron implant. Samples consisted of (i) RHlPOX'ed strip exposed to a boron implant, (ii) recessed strip prior to HIPOX, but exposed to a boron implant, (iii) test-pad prior to HIPOX, (iv) HIPOX'ed region away from R-HIPOX edge. Cross-section TEM specimens were prepared in the <110> substrate-geometry.


1987 ◽  
Vol 105 ◽  
Author(s):  
E. C. Frey ◽  
N. R. Parikh ◽  
M. L. Swanson ◽  
M. Z. Numan ◽  
W. K. Chu

AbstractWe have studied oxidation of various Si samples including: Ge implanted Si, CVD and MBE grown Si(0.4–4% Ge) alloys, and MBE grown Si-Si(Ge) superlattices. The samples were oxidized in pyrogenic steam (800–1000°C, atmospheric pressure) and at low temperature and high pressure (740°C, 205 atm of dry O2). The oxidized samples were analyzed with RBS/channeling and ellipsometry.An enhanced oxidation rate was seen for all Ge doped samples, compared with rates for pure Si. The magnitude of the enhancement increased with decreasing oxidation temperature. For steam oxidations the Ge was segregated from the oxide and formed an epitaxial layer at the Si-SiO2 interface; the quality of the epitaxy was highest for the highest oxidation temperatures. For high pressure oxidation the Ge was trapped in the oxide and the greatest enhancement in oxidation rate (>100%) was observed.


2019 ◽  
Vol 37 (1) ◽  
pp. 469-476 ◽  
Author(s):  
Paul Marshall ◽  
Caroline Leung ◽  
Jorge Gimenez-Lopez ◽  
Christian T. Rasmussen ◽  
Hamid Hashemi ◽  
...  

1982 ◽  
Vol 11 (5) ◽  
pp. 919-929 ◽  
Author(s):  
M. Hirayama ◽  
H. Miyoshi ◽  
N. Tsubouchi ◽  
H. Abe

1998 ◽  
Vol 15 (1-2) ◽  
pp. 27-35
Author(s):  
K N Bhat ◽  
P R S Rao ◽  
J Vijayakumar ◽  
S Seetharaman ◽  
K Gopinath ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document