Selective Removal of Silicon-Germanium: Chemical and Reactive Ion Etching

1993 ◽  
Vol 298 ◽  
Author(s):  
F. Scott Johnson ◽  
Veena Misra ◽  
J. J. Wortman ◽  
Leanne R. Martin ◽  
Gari A. Harris ◽  
...  

AbstractThe use of both chemical and reactive ion etching for the selective removal of SixGe1-x alloys with respect to both silicon and silicon dioxide has been investigated. We have found that a solution of NH4OH:H2O2:H2O is effective in selectively etching the SixGe1-x films with respect to both of these materials. The chemical composition of the substrate surface after removal of insitu doped SixGe1-x films was evaluated using EDS and SIMS. Diffusion from insitu doped Si0.7Ge0.3, followed by selective removal, was used to demonstrate self-aligned npn dopant profiles with narrow base widths. Reactive ion etching of SixGe1-x alloys was investigated using SF6, CF4, and Cl2 based chemistries. Pressure, power, and gas flow ratios were optimized to provide the least isotropic etch possible for SixGe1-x films containing approximately 40% Ge. Selectivity and degree of anisotropic etching were determined as a function of Ge content for samples with 0% to 100% Ge. Samples were analyzed using SEM and ellipsometry. Highest selectivities were achieved using SF6 and O2.

2016 ◽  
Vol 228 ◽  
pp. 297-304 ◽  
Author(s):  
Matthieu Lépinay ◽  
Daniel Lee ◽  
Riccardo Scarazzini ◽  
Michel Bardet ◽  
Marc Veillerot ◽  
...  

1993 ◽  
Vol 324 ◽  
Author(s):  
Douglas L. Melville ◽  
J.G. Simmons ◽  
D.A. Thompson

AbstractThe advantages of in-situ SIMS plasma probe diagnostics are highlighted in low pressure hydrocarbon ECR reactive ion etching (RIE) of III-V materials. Three aspects of the RIE process are investigated. First, the dominant ion species in a CH4/H2/Ar plasma are recorded at various chamber pressures, ECR powers, CH4/(CH4+H2) gas flow ratios and microwave cavity tuning. These studies have improved our understanding of the effects of these parameters on the relative concentrations of reactive precursor species in the plasma and have led to more rapid optimization of the etch system. Secondly, SIMS has been used for identification of reaction products from the III-V surface at the optimized plasma conditions. The Ar diluted mixture gives rise to significant levels of group V hydrides and organometallic compounds and the dominant group III volatile ions have been positively identified as dimethyl species. The third and final aspect reported is the application of volatile product identification to endpoint detection. In lcm2 multiple quantum well samples, layers as thin as 50Å are easily distinguishable.


1987 ◽  
Author(s):  
Peter C. Sukanek ◽  
Glynis Sullivan

1991 ◽  
Vol 240 ◽  
Author(s):  
C. P. Chen ◽  
K. S. Din ◽  
F. S. Huang

ABSTRACTIn the self-alignment technology for GaAs MESFET, the pattern technique for refractory suicide gate is needed. Reactive ion etching (RIE) of TaSix on GaAs has been performed in a mixture of CF4 and O2 Etching properties have been studied as function of oxygen percentage, total pressure and power. The samples were then examined in Scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to understand the surface morphology and constitution. It is found that the etch rate of TaSixincreased with increasing oxygen percentage initially, reached a maximum value near 10∼15% O2, then started to decrease with increasing oxygen at applied power 100 watt, pressure 50 mtorr, and total gas flow 40 seem. This etch rate also increases with RF power and total pressure in CF4 + O2 15% gas at gas flow rate 40 sccm. For GaAs etching, the rate is independent of oxygen percentage. This etch rate of GaAs also increases with power, but decreases with total pressure. Meanwhile, the SEM micrograph shows no undercut for sample after RIE at the applied power 140 watt with the pressure of 20 mtorr.


Vacuum ◽  
1994 ◽  
Vol 45 (5) ◽  
pp. 519-524 ◽  
Author(s):  
R Jackson ◽  
AJ Pidduck ◽  
MA Green

Sign in / Sign up

Export Citation Format

Share Document