Molecular-Dynamics Simulations of Low-Energy Ion/Surface Interactions During Ion-Beam-Assisted Thin Film Deposition.

1993 ◽  
Vol 317 ◽  
Author(s):  
H. Feil

ABSTRACTMolecular dynamics simulations are performed of low-energy ion irradiation of two-dimensional Cu islands on a Cu(111) surface. The irradiation of the surface with low-energy particles influences the mobility of the atoms in the surface region and therefore may alter the thin film growth Mode. The effect of 100 eV Ar+ ions incident at grazing angles is limited to situations in which the ions hit the edges of the islands. In Most cases the islands lose one or two atoms. Changing the angle-of-incidence or changing the type of the incident particle has a strong influence on the size distribution of the two-dimensional islands.

1992 ◽  
Vol 285 ◽  
Author(s):  
H. Feil ◽  
J.S.C. Kools ◽  
J. Dieleman

ABSTRACTMolecular dynamics simulations are performed of Cu thin film growth on Cu (111). Ion-Assisted Deposition is simulated by bombarding the substrate with Cu+ ions with a kinetic energy of 80 eV, while 1 eV Cu atoms are used for the simulation of Laser Ablation Deposition. It appears that Ion-Assisted Deposition leads to sputtering, enhanced surface mobility, surface disorder, mixing and rather deep damage. This is discussed in some detail. Laser Ablation Deposition, using laser fluences just above the ablation threshold, does not lead to damage and mixing. Sharper interfaces and more perfect heterostructures and superlattices can be produced using Laser Ablation Deposition.


2001 ◽  
Vol 677 ◽  
Author(s):  
W. C. Liu ◽  
Y. X. Wang ◽  
C. H. Woo ◽  
Hanchen Huang

ABSTRACTIn this paper we present three-dimensional molecular dynamics simulations of dislocation nucleation and propagation during thin film deposition. Aiming to identify mechanisms of dislocation nucleation in polycrystalline thin films, we choose the film material to be the same as the substrate – which is stressed. Tungsten and aluminum are taken as representatives of BCC and FCC metals, respectively, in the molecular dynamics simulations. Our studies show that both glissile and sessile dislocations are nucleated during the deposition, and surface steps are preferential nucleation sites of dislocations. Further, the results indicate that dislocations nucleated on slip systems with large Schmid factors more likely survive and propagate into the film. When a glissile dislocation is nucleated, it propagates much faster horizontally than vertically into the film. The mechanisms and criteria of dislocation nucleation are essential to the implementation of the atomistic simulator ADEPT.


MRS Bulletin ◽  
1988 ◽  
Vol 13 (12) ◽  
pp. 40-45 ◽  
Author(s):  
S.M. Rossnagel ◽  
J.J. Cuomo

Ion beam processing for thin film deposition is rapidly overtaking some of the more conventional plasma-based thin film processing techniques. This is due to strong improvements in the types and reliabilities of the sources available as well as a growing understanding of the advantages and capabilities of using ion beams.An ion beam process can be differentiated from a plasma-based process in that the plasma in an ion beam is generated away from the sample and a beam of ions is directed at the sample. In a plasma-based process, the sample is usually immersed in the plasma. This highlights the fundamental advantage of ion beam processing—control of the flux and energy of the ions incident on either a sample or a target (for sputter deposition). It is this control which is missing in plasma-based processing, where the ion flux (current), ion energy, chamber pressure, and gas species are all hopelessly intertwined. In addition, certain aspects of the ion bombardment—angle of incidence, complications of gas scattering, etc. —are essentially fixed in plasma-based processing, leaving no room to vary parameters, and in conjunction, film properties.A wealth of different types of ion sources cover a broad range of beam currents and energies. At the high energy end (0.1 – 20 MeV) are the implantation sources, typically used for doping semiconductors and treating surfaces (hardening, for example) and for various types of nuclear chemical analysis. These sources, however, tend to be very low current (μA). At slightly lower energies (tens of kilo-electron volts), but significantly higher currents (50 A), are the ion sources used for heating fusion plasmas.


1993 ◽  
Vol 311 ◽  
Author(s):  
A.A. Mazzone

ABSTRACTThis work presents molecular dynamics simulations of low-energy (40-80 eV) ionbeam mixing of thin metallic hetero-structures. The results indicate that the propagation of the cascade may maintain or even restore crystallinity in disordered interfacial regions.


1997 ◽  
Vol 26 (11) ◽  
pp. 1270-1273 ◽  
Author(s):  
Krishna Rajan ◽  
R. Roy ◽  
J. Trogolo ◽  
J. J. Cuomo

Sign in / Sign up

Export Citation Format

Share Document