Calculations Pertaining to Raman Scattering During Laser Annealing of Ion-Implanted Silicon

1981 ◽  
Vol 4 ◽  
Author(s):  
R. F. Wood ◽  
D. H. Lowndes ◽  
G. E. Giles

ABSTRACTCompaan and co-workers have reported the results of time-resolved optical experiments on ion-implanted silicon which they claim prove the melting model of pulsed laser annealing cannot be correct. These results concern the rapid onset of a Raman signal after a heating laser pulse, the simultaneous occurrence of a Raman signal and the high reflectivity phase characteristic of molten silicon, and the lattice temperature measured by the Raman Stokes/anti-Stokes intensity ratio. In this paper, we show by detailed numerical calculations with the melting model that there is, in fact, excellent agreement between the results of the calculations and the experimental results reported by Compaan and co-workers.

1983 ◽  
Vol 13 ◽  
Author(s):  
G. E. Jellison ◽  
D. H. Lowndes ◽  
R. F. Wood

ABSTRACTRaman temperature measurements during pulsed laser annealing of Si by Compaan and co-workers are critically examined. It has been shown previously that the Stokes to anti-Stokes ratio depends critically upon the optical properties of silicon as a function of temperature. These dependences, coupled with the large spatial and temporal temperature gradients normally found immediately after the high reflectivity phase, result in large variations in the calculated temperature depending upon the probe laser pulse width and the pulse-to-pulse and spatial variations in the annealing pulse energy density.


1979 ◽  
Author(s):  
Kouichi Murakami ◽  
Kenji Gamo ◽  
Susumu Namba ◽  
Mitsuo Kawabe ◽  
Yoshinobu Aoyagi ◽  
...  

1981 ◽  
Vol 4 ◽  
Author(s):  
Douglas H. Lowndes ◽  
Bernard J. Feldman

ABSTRACTIn an effort to understand the origin of defects earlier found to be present in p–n junctions formed by pulsed laser annealing (PLA) of ion implanted (II) semiconducting GaAs, photoluminescence (PL) studies have been carried out. PL spectra have been obtained at 4K, 77K and 300K, for both n–and p–type GaAs, for laser energy densities 0 ≤ El ≤ 0.6 J/cm2. It is found that PLA of crystalline (c−) GaAs alters the PL spectrum and decreases the PL intensity, corresponding to an increase in density of non-radiative recombination centers with increasing El. The variation of PL intensity with El is found to be different for n– and p–type material. No PL is observed from high dose (1 or 5×1015 ions/cm2 ) Sior Zn-implanted GaAs, either before or after laser annealing. The results suggest that the ion implantation step is primarily responsible for formation of defects associated with the loss of radiative recombination, with pulsed annealing contributing only secondarily.


1979 ◽  
Vol 7 (2) ◽  
pp. 152-160
Author(s):  
Kouichi MURAKAMI ◽  
Eiji IKAWA ◽  
A. H. ORABY ◽  
Kenji GAMO ◽  
Susumu NAMBA ◽  
...  

1981 ◽  
Vol 4 ◽  
Author(s):  
B. C. Larson ◽  
C. W. White ◽  
T. S. Noggle ◽  
J. F. Barhorst ◽  
D. Mills

ABSTRACTSynchrotron x-ray pulses have been used to make nanosecond resolution time-resolved x-ray diffraction measurements on silicon during pulsed laser annealing. Thermal expansion analysis of near-surface strains during annealing has provided depth dependent temperature profiles indicating >1100°C temperatures and diffraction from boron implanted silicon has shown evidence for near-surface melting. These results are in qualitative agreement with the thermal melting model of laser annealing.


1979 ◽  
Author(s):  
J. Stephen ◽  
B. J. Smith ◽  
N. G. Blamires

Sign in / Sign up

Export Citation Format

Share Document