Anomalous Kinetics of the Trapping Reaction in One Dimension Under Steady State Conditions

1995 ◽  
Vol 407 ◽  
Author(s):  
Anna L. Lin ◽  
Raoul Kopelman

ABSTRACTWe study the A + B→B trapping reaction under steady state conditions for the case in which both A particles and traps(B) are mobile. Using Monte Carlo simulations, we follow the kinetic rate law in one dimension. Anomalies arise due to self-organization of the A particles, which results in a slower steady state reaction rate than is predicted classically. We find a partial order of reaction with respect to trap density of X = 2, and an overall order for the reaction of Z = 3.2. These results are in agreement with other works which predict an exponential rather than an algebraic decay law with respect to the A particle density.

1990 ◽  
Vol 202 ◽  
Author(s):  
Peter M. Richards

ABSTRACTSteady state roughness of surfaces growing by molecular beam epitaxy is investigated by Monte Carlo simulations under conditions where an ion beam is also present which sputters adatoms off the surface. If the sputtering is random, it only increases the roughness. But if the sputtering probability is strongly dependent on the binding energy of an adatom within a cluster or island, the ions can have a smoothening effect. Physical arguments are given in support of the results.


1998 ◽  
Vol 376 ◽  
pp. 149-182 ◽  
Author(s):  
MICHAEL B. MACKAPLOW ◽  
ERIC S. G. SHAQFEH

The sedimentation of fibre suspensions at low Reynolds number is studied using two different, but complementary, numerical simulation methods: (1) Monte Carlo simulations, which consider interparticle hydrodynamic interactions at all orders within the slender-body theory approximation (Mackaplow & Shaqfeh 1996), and (ii) dynamic simulations, which consider point–particle interactions and are accurate for suspension concentrations of nl3=1, where n and l are the number density and characteristic half-length of the fibres, respectively. For homogeneous, isotropic suspensions, the Monte Carlo simulations show that the hindrance of the mean sedimentation speed is linear in particle concentration up to at least nl3=7. The speed is well predicted by a new dilute theory that includes the effect of two-body interactions. Our dynamic simulations of dilute suspensions, however, show that interfibre hydrodynamic interactions cause the spatial and orientational distributions to become inhomogeneous and anisotropic. Most of the fibres migrate into narrow streamers aligned in the direction of gravity. This drives a downward convective flow within the streamers which serves to increase the mean fibre sedimentation speed. A steady-state orientation distribution develops which strongly favours fibre alignment with gravity. Although the distribution reaches a steady state, individual fibres continue to rotate in a manner that can be qualitatively described as a flipping between the two orientations aligned with gravity. The simulation results are in good agreement with published experimental data.


Author(s):  
S.M. Asadov ◽  

This article is devoted to modeling the kinetics of colloidal crystallization of cadmium selenide (CdSe) nanoparticles (NPs). The kinetic equation is modified, considering the contributions of the reaction rate constants of individual stages. It includes the reaction rate constants, thermodynamic and calculated parameters, and physical properties. There is used modified kinetic model based on the crystallization equation. There are considered the contributions of adsorption, desorption, and migration of nucleated particles at different times. Modified model assumes that, upon crystallization of NPs CdSe, monomer units depend on the frequency of attachment and detachment transitions of the monomer–CdSe complex. In this case, the transformation of the precursor into a monomer, the formation of an effective monomer and nucleation pass into the growth stage of (NC CdSe) nanocrystals with a seeded mass. In the process, the resulting nanocluster will continue to grow due to early maturation, aging, and subsequent growth into larger NC CdSe. The Kinetic Monte Carlo method (KMC) is used to approximate the model of the nucleation–growth of NC considering different contributions to the reaction rate constants. The modified model with the use of KMC allows to describe the dependences of the kinetic rate constants on the average radius of nanoparticles as a function of time, concentration, and distribution of NC CdSe at a given time. There are described conditions for the formation of NPs CdSe with an evolutionary distribution function of NC CdSe in size space. The results of modeling the kinetics of colloidal crystallization of CdSe can be used to control nucleation rate and growth of NPs CdSe, as well as similar systems in the formation of high-quality NC.


2006 ◽  
Vol 125 (7) ◽  
pp. 074705 ◽  
Author(s):  
Rodolfo Omar Uñac ◽  
Victor Bustos ◽  
Jarod Wilson ◽  
Giorgio Zgrablich ◽  
Francisco Zaera

1994 ◽  
Vol 9 (2) ◽  
pp. 348-356 ◽  
Author(s):  
L. Anthony ◽  
B. Fultz

A kinetic theory of ordering based on the path probability method was implemented in the pair (Bethe) approximation and used to study the kinetics of short- and long-range ordering in alloys with equilibrium states of B2, DO3, or B32 order. The theory was developed in a superposition approximation for a vacancy mechanism on a bcc lattice with first- (1nn) and second-nearest neighbor (2nn) pair interactions. Chained 1nn conditional probabilities were used to account for the entropy of 2nn pair configurations. Monte Carlo simulations of ordering were also performed and their results compared to predictions of the pair approximation. Comparisons are also made with predictions from an earlier kinetic theory implemented in the point (Bragg-Williams) approximation. For all three calculations (point, pair, and Monte Carlo), critical temperatures for B2 and DO3 ordering are reported for different 1nn and 2nn interaction strengths. The influence of annealing temperature on the kinetic paths through the space of B2, DO3, and B32 order parameters was found to be strong when the thermodynamic preferences for the ordered states were of similar strengths. Transient states of intermediate order were also studied. A transient formation of B32 order in an AB3 alloy was found when 2nn interactions were strong, even when B32 order was neither a Richards-Allen-Cahn ground state nor a stable equilibrium state at that temperature. The formation of this transient B32 order can be argued consistently from a thermodynamic perspective. However, a second example of transient B2 order in an AB alloy with equilibrium B32 order cannot be explained by the same thermodynamic argument, and we believe that its origin is primarily kinetic.


1995 ◽  
Vol 242 (1-2) ◽  
pp. 228-231 ◽  
Author(s):  
Xiang Yun Guo ◽  
Bing Zhong ◽  
Shao Yi Peng

2015 ◽  
Vol 59 (10) ◽  
pp. 6344-6351 ◽  
Author(s):  
A. Smits ◽  
R. F. W. De Cock ◽  
K. Allegaert ◽  
S. Vanhaesebrouck ◽  
M. Danhof ◽  
...  

ABSTRACTBased on a previously derived population pharmacokinetic model, a novel neonatal amikacin dosing regimen was developed. The aim of the current study was to prospectively evaluate this dosing regimen. First, early (before and after second dose) therapeutic drug monitoring (TDM) observations were evaluated for achieving target trough (<3 mg/liter) and peak (>24 mg/liter) levels. Second, all observed TDM concentrations were compared with model-predicted concentrations, whereby the results of a normalized prediction distribution error (NPDE) were considered. Subsequently, Monte Carlo simulations were performed. Finally, remaining causes limiting amikacin predictability (i.e., prescription errors and disease characteristics of outliers) were explored. In 579 neonates (median birth body weight, 2,285 [range, 420 to 4,850] g; postnatal age 2 days [range, 1 to 30 days]; gestational age, 34 weeks [range, 24 to 41 weeks]), 90.5% of the observed early peak levels reached 24 mg/liter, and 60.2% of the trough levels were <3 mg/liter (93.4% ≤5 mg/liter). Observations were accurately predicted by the model without bias, which was confirmed by the NPDE. Monte Carlo simulations showed that peak concentrations of >24 mg/liter were reached at steady state in almost all patients. Trough values of <3 mg/liter at steady state were documented in 78% to 100% and 45% to 96% of simulated cases with and without ibuprofen coadministration, respectively; suboptimal trough levels were found in patients with postnatal age <14 days and current weight of >2,000 g. Prospective evaluation of a model-based neonatal amikacin dosing regimen resulted in optimized peak and trough concentrations in almost all patients. Slightly adapted dosing for patient subgroups with suboptimal trough levels was proposed. This model-based approach improves neonatal dosing individualization.


Sign in / Sign up

Export Citation Format

Share Document