Investigations of Microwave Absorption in Insulating Dielectric Ionic Crystals Including the Role of Point Defects and Dislocations

1996 ◽  
Vol 430 ◽  
Author(s):  
Benjamin D.B. Klein ◽  
Binshen Meng ◽  
Samuel A. Freeman ◽  
John H. Booske ◽  
Reid F. Cooper

AbstractA theoretical model of microwave absorption in linear dielectric (non-ferroelectric) ionic crystals that takes into account the presence of point defects was synthesized and verified using NaCl single crystals. In the next stage of this research, we will introduce a controlled density of dislocations into the single crystal NaCl samples and study the effect on the microwave absorption mechanisms (ionic conduction, dielectric relaxation and multi-phonon processes) both theoretically and experimentally. Qualitative outlines of this modified theory are presented. The loss factor ε’ has been measured in the dislocation-free case by a cavity resonator insertion technique and the experimental results are in good agreement with the theoretical model. We describe the sample preparation technique that will be used to produce a controlled dislocation density in single crystal samples that will also be studied in our cavity resonator insertion system.

1996 ◽  
Vol 53 (19) ◽  
pp. 12777-12785 ◽  
Author(s):  
Binshen Meng ◽  
Benjamin D. B. Klein ◽  
John H. Booske ◽  
Reid F. Cooper

Author(s):  
M. Awaji

It is necessary to improve the resolution, brightness and signal-to-noise ratio(s/n) for the detection and identification of point defects in crystals. In order to observe point defects, multi-beam dark-field imaging is one of the useful methods. Though this method can improve resolution and brightness compared with dark-field imaging by diffuse scattering, the problem of s/n still exists. In order to improve the exposure time due to the low intensity of the dark-field image and the low resolution, we discuss in this paper the bright-field high-resolution image and the corresponding subtracted image with reference to a changing noise level, and examine the possibility for in-situ observation, identification and detection of the movement of a point defect produced in the early stage of damage process by high energy electron bombardment.The high-resolution image contrast of a silicon single crystal in the [10] orientation containing a triple divacancy cluster is calculated using the Cowley-Moodie dynamical theory and for a changing gaussian noise level. This divacancy model was deduced from experimental results obtained by electron spin resonance. The calculation condition was for the lMeV Berkeley ARM operated at 800KeV.


Author(s):  
Donatella della Porta ◽  
Massimiliano Andretta ◽  
Tiago Fernandes ◽  
Eduardo Romanos ◽  
Markos Vogiatzoglou

The second chapter covers the main characteristics of transition time in the four countries: Italy, Greece, Spain, and Portugal. After developing the theoretical model on paths of transition, with a focus on social movement participation, the chapter looks at social movements and protest events as turning points during transition, covering in particular the specific movement actors, their organizational models, and their repertoires of action and frames. The chapter focuses on two dimensions: the role of mobilization in the transition period, which implies the analysis of how elites and masses interact, ally, or fight with each other in the process, and the outcome of transitions as continuity versus rupture of the democratic regime vis-à-vis the old one. It concludes by elaborating some hypotheses on how different modes of transition may produce different types and uses of (transition) memories.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Yogesh Kumar ◽  
Rabia Sultana ◽  
Prince Sharma ◽  
V. P. S. Awana

AbstractWe report the magneto-conductivity analysis of Bi2Se3 single crystal at different temperatures in a magnetic field range of ± 14 T. The single crystals are grown by the self-flux method and characterized through X-ray diffraction, Scanning Electron Microscopy, and Raman Spectroscopy. The single crystals show magnetoresistance (MR%) of around 380% at a magnetic field of 14 T and a temperature of 5 K. The Hikami–Larkin–Nagaoka (HLN) equation has been used to fit the magneto-conductivity (MC) data. However, the HLN fitted curve deviates at higher magnetic fields above 1 T, suggesting that the role of surface-driven conductivity suppresses with an increasing magnetic field. This article proposes a speculative model comprising of surface-driven HLN and added quantum diffusive and bulk carriers-driven classical terms. The model successfully explains the MC of the Bi2Se3 single crystal at various temperatures (5–200 K) and applied magnetic fields (up to 14 T).


Sign in / Sign up

Export Citation Format

Share Document