Transuranium Element Incorporation into the β-U3O8 Uranyl Sheet

1996 ◽  
Vol 465 ◽  
Author(s):  
M. L. Miller ◽  
P. C. Burns ◽  
R. J. Finch ◽  
R. C. Ewing

ABSTRACTSpent nuclear fuel (SNF) is unstable under oxidizing conditions. Although recent studies have determined the paragenetic sequence for uranium phases that result from the corrosion of SNF, there are only limited data on the potential of alteration phases for the incorporation of transuranium elements. The crystal chemical characteristics of transuranic elements (TUE) are to a certain extent similar to uranium; thus TUE incorporation into the sheets of uranyl oxide hydrate structures can be assessed by examination of the structural details of the β-U3O8 sheet type.The sheets of uranyl polyhedra observed in the crystal structure of β-U3O8 also occur in the mineral billietite (Ba[(UO2)3O2(OH)3]2(H2O)4), where they alternate with α-U3O8 type sheets. Preliminary crystal structure determinations for the minerals ianthinite, ([U24+(HO2)4O6(HO)4(H2O)4](H2O)5), and “wyartite II” (mineral name not approved by IMA committee on mineral names), {CaCo3}[U4+(UO2)2O3(OH)2](H2O)4, indicate that these phases also contain β-U3O8 type sheets. The β-U3O8sheet anion topology contains triangular, rhombic, and pentagonal sites in the proportions 2: 1:2. In all structures containing β-U3O8 type sheets, the triangular sites are vacant. The pentagonal sites are filled with U6+O2 forming pentagonal bipyramids. The rhombic dipyramids filling the rhombic sites contain U6+O2 in billietite, U4+O2 in β-U3O8U4+(H2O)2 in ianthinite, and U4+O3 in “wyartite-II” (in which one apical anion is replaced by two O atoms forming a shared edge with a carbonate triangle of the interlayer). Interlayer species include: H2O (billietite, “wyartite II”, and ianthinite), Ba2+ (billietite) Ca2+ (”wyartite II”), and CO3−2 (”wyartite II”); there is no interlayer in β-U3O8. The similarity of known TUE coordination polyhedra with those of U suggests that the β-U3O8 sheet will accommodate TUE substitution coupled with variations in apical anion configuration and interlayer population providing the required charge balance.

2020 ◽  
Vol 75 (9-10) ◽  
pp. 805-813
Author(s):  
Irma Peschke ◽  
Lars Robben ◽  
Christof Köhler ◽  
Thomas Frauenheim ◽  
Josef-Christian Buhl ◽  
...  

AbstractSynthesis, crystal structure and temperature-dependent behavior of Na2H4Ga2GeO8 are reported. This novel gallogermanate crystallizes in space group I41/acd with room-temperature powder diffraction lattice parameters of a = 1298.05(1) pm and c = 870.66(1) pm. The structure consists of MO4 (M = Ga, Ge) tetrahedra in four-ring chains, which are connected by two different (left- and right-handed) helical chains of NaO6 octahedra. Protons coordinating the oxygen atoms of the GaO4 tetrahedra not linked to germanium atoms ensure the charge balance. Structure solution and refinement are based on single crystal X-ray diffraction measurements. Proton positions are estimated using a combined approach of DFT calculations and NMR, FTIR and Raman spectroscopic techniques. The thermal expansion was examined in the range between T = 20(2) K and the compound’s decomposition temperature at 568(5) K, in which no phase transition could be observed, and Debye temperatures of 266(11) and 1566(65) K were determined for the volume expansion.


2000 ◽  
Vol 55 (12) ◽  
pp. 1103-1113 ◽  
Author(s):  
Hans Bock ◽  
K. Gharagozloo-Hubmann ◽  
M. Sievert

The π-hydrocarbons p-terphenyl and p-quaterphenyl are reduced to their dianions in aprotic solutions of different ethers at sodium metal mirrors. Single crystal structure determinations of the solvent-separated or solvens-shared contact ion multiples, [p-terphenyl⊖⊖ Na⊕(DME)2Na⊕DME]2, p-quaterphenyl⊖⊖ ][Na⊕(DME)3]2 and [p-quaterpheny⊖⊖( Na⊕(THF)3)2], prove the essential cation solvation by the chelating dimethoxyethane (DME) versus the bulky tetrahydrofuran (THF) ligands: The solution network of equilibria between solvent separated and solvent shared ion aggregates can be considerably and transparently modified by the ether solvent selected. In addition, the structures of the monomeric sodium salts reveal partly novel details of metal cation coordination by contacts Na⊕ ··· O as well as Na⊕ ··· Cπ such as in the dimeric sodium salt of p-terphenyl dianion, [(DME)2Na⊕ (terphenyl⊖⊖)(Na⊕ DME)(terphenyl⊖⊖)Na⊕ (DME)2].


2013 ◽  
Vol 68 (11) ◽  
pp. 1198-1206 ◽  
Author(s):  
Ernst Hinteregger ◽  
Michael Enders ◽  
Almut Pitscheider ◽  
Klaus Wurst ◽  
Gunter Heymann ◽  
...  

The new rare-earth fluoride borates RE2(BO3)F3 (RE=Tb, Dy, Ho) were synthesized under highpressure/ high-temperature conditions of 1:5 GPa=1200 °C for Tb2(BO3)F3 and 3:0 GPa=900 °C for Dy2(BO3)F3 and Ho2(BO3)F3 in a Walker-type multianvil apparatus from the corresponding rareearth sesquioxides, rare-earth fluorides, and boron oxide. The single-crystal structure determinations revealed that the new compounds are isotypic to the known rare-earth fluoride borate Gd2(BO3)F3. The new rare-earth fluoride borates crystallize in the monoclinic space group P21/c (Z = 8) with the lattice parameters a=16:296(3), b=6:197(2), c=8:338(2) Å , b =93:58(3)° for Tb2(BO3)F3, a= 16:225(3), b = 6:160(2), c = 8:307(2) Å , b = 93:64(3)° for Dy2(BO3)F3, and a = 16:189(3), b = 6:124(2), c = 8:282(2) Å , β= 93:69(3)° for Ho2(BO3)F3. The four crystallographically different rare-earth cations (CN=9) are surrounded by oxygen and fluoride anions. All boron atoms form isolated trigonal-planar [BO3]3- groups. The six crystallographically different fluoride anions are in a nearly planar coordination by three rare-earth cations.


1979 ◽  
Vol 57 (22) ◽  
pp. 2967-2970 ◽  
Author(s):  
Gabriel Llabrès ◽  
Marcel Baiwir ◽  
Léon Christiaens ◽  
Jean-Louis Piette

The 1Hmr study of the title compounds has revealed a screw conformation, with defined interconversion processes, in good agreement with crystal structure determinations and theoretical calculations. The mesomeric effect of the heteroatom is smaller than in the anisole series, due to steric inhibitions.The 13Cmr enhances, to some extent, these conclusions. In the case of Te compounds, a heavy atom effect adds to the classical mesomeric and inductive effects to account for the experimental observations.


1978 ◽  
Vol 49 (8) ◽  
pp. 4411-4416 ◽  
Author(s):  
H. d’Amour ◽  
D. Schiferl ◽  
W. Denner ◽  
Heinz Schulz ◽  
W. B. Holzapfel

Author(s):  
Moisés Canle L. ◽  
William Clegg ◽  
Ibrahim Demirtas ◽  
Mark R. J. Elsegood ◽  
Howard Maskill

Author(s):  
Rongqing Shang ◽  
An T. Nguyen ◽  
Allan He ◽  
Susan M. Kauzlarich

A rare-earth-containing compound, ytterbium aluminium antimonide, Yb3AlSb3 (Ca3AlAs3-type structure), has been successfully synthesized within the Yb–Al–Sb system through flux methods. According to the Zintl formalism, this structure is nominally made up of (Yb2+)3[(Al1−)(1b – Sb2−)2(2b – Sb1−)], where 1b and 2b indicate 1-bonded and 2-bonded, respectively, and Al is treated as part of the covalent anionic network. The crystal structure features infinite corner-sharing AlSb4 tetrahedra, [AlSb2Sb2/2]6−, with Yb2+ cations residing between the tetrahedra to provide charge balance. Herein, the synthetic conditions, the crystal structure determined from single-crystal X-ray diffraction data, and electronic structure calculations are reported.


Author(s):  
Morten K. Peters ◽  
Christian Näther ◽  
Rainer Herges

In the crystal structure of the title compound, [Fe(C44H28N4)(C6H7NO)2]ClO4, the FeIII ions are coordinated in an octahedral fashion by four N atoms of the porphyrin moiety and two N atoms of two 4-methoxypyridine ligands into discrete complexes that are located on inversion centers. Charge-balance is achieved by perchlorate anions that are disordered around twofold rotation axes. In the crystal structure, the discrete cationic complexes and the perchlorate anions are arranged into layers with weak C—H...O interactions between the cations and the anions. The porphyrin moieties of neighboring layers show a herringbone-like arrangement.


Sign in / Sign up

Export Citation Format

Share Document