mesomeric effect
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 4)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hien Thi Dinh ◽  
Nam Trung Tran ◽  
Dai Xuan Trinh

In this work, the adsorptive removal of methylene blue and methyl orange by UiO-66-NO2 nanoparticles was studied. The influence of pH on the adsorption capacity was assessed. The kinetics of the adsorption process were investigated and compared with pseudo-first-order, pseudo-second-order, Elovich, and intraparticle models. The kinetics of the adsorption fits moderately with the pseudo-first-order, but perfectly fits with pseudo-second-order models, and has a very good fit with the Elovich and intraparticle models. The adsorption isotherms were measured and compared with the Langmuir and Freundlich models. The adsorption capacity of methyl orange (MO) on UiO-66-NO2 nanoparticles (142.9 mg/g) was over three times higher than that of methylene blue (MB) on the nanoparticles (41.7 mg/g). The discrepancy between these capacities was attributed to the presence of the -NO2 functional group, which caused a strong negative mesomeric effect in the metal-organic framework structure.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5850
Author(s):  
Vladimir Chobot ◽  
Franz Hadacek ◽  
Gert Bachmann ◽  
Wolfram Weckwerth ◽  
Lenka Kubicova

Flavonoids are rather common plant phenolic constituents that are known for potent antioxidant effects and can be beneficial for human health. Flavonoids with a pyrogallol moiety are highly efficient reducing agents with possible pro- and antioxidant effects, depending on the reaction milieu. Therefore, the redox properties of myricetin and tricetin were investigated by differential pulse voltammetry and deoxyribose degradation assay. Tricetin proved to be a good antioxidant but only showed negligible pro-oxidant activity in one of the deoxyribose degradation assay variants. Compared to tricetin, myricetin showed pro- and antioxidant effects. The more efficient reducing properties of myricetin are probably caused by the positive mesomeric effect of the enolic 3-hydroxy group on ring C. It is evident that the antioxidant properties of structurally similar flavonoids can be converted to apparent pro-oxidant effects by relatively small structural changes, such as hydroxylation. Since reactive oxygen species (ROS) often serve as secondary messengers in pathological and physiological processes in animal and plant cells, the pro- and antioxidant properties of flavonoids are an important part of controlling mechanisms of tissue signal cascades.


2019 ◽  
Vol 9 (22) ◽  
pp. 4743 ◽  
Author(s):  
Che-Hsuan Yang ◽  
Jui-Cheng Chang ◽  
Tzi-Yi Wu ◽  
I-Wen Sun ◽  
Jun-Hao Wu ◽  
...  

Unique tunable aryl-imidazolium magnetic ionic liquids with dual functions as a solvent–catalyst and dual Brønsted–Lewis acidity (B-L MILs) are applied for Friedel–Crafts alkylation without additional solvents. The catalytic properties of these B-L MILs in the Friedel–Crafts alkylation of p-xylene with benzyl chloride are investigated. The various reaction parameters, including the catalyst dosage, reaction time, reaction temperature, molar ratio of reactants, and reusability, are discussed. The results show that the B-L MIL 5c has more excellent product selectivity (>99%) and reactant conversion (>99%) under the following optimum conditions (reaction temperature = 80 °C, reaction time = 0.5 h, molar ratio of p-xylene to benzyl chloride = 6:1, and catalyst 5c dosage = 1.0 mole %) than traditional catalysts reported in the previous literature. Specifically, due to the mesomeric effect between the FeCl4 anion and hydrogen atom at cationic moiety, the catalyst B-L MILs with the molar fraction of FeCl3 equal to 0.5 can be easily recovered and provide satisfactory catalytic activity after being re-used six times.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3683 ◽  
Author(s):  
Justyna Wielińska ◽  
Andrzej Nowacki ◽  
Beata Liberek

5-Fluorouracil (5FU), a common anti-cancer drug, occurs in four tautomeric forms and possesses two potential sites of both protonation and deprotonation. Tautomeric and resonance structures of the ionized forms of 5FU create the systems of connected equilibriums. Since there are contradictory reports on the ionized forms of 5FU in the literature, complex theoretical studies on neutral, protonated and deprotonated forms of 5FU, based on the broad spectrum of DFT methods, are presented. These indicate that the O4 oxygen is more willingly protonated than the O2 oxygen and the N1 nitrogen is more willingly deprotonated than the N3 nitrogen in a gas phase. Such preferences are due to advantageous charge delocalization of the respective ions, which is demonstrated by the NBO and ESP analyses. In an aqueous phase, stability differences between respective protonated and deprotonated forms of 5FU are significantly diminished due to the competition between the mesomeric effect and solvation. The calculated pKa values of the protonated, neutral and singly deprotonated 5FU indicate that 5FU does not exist in the protonated and double-deprotonated forms in the pH range of 0–14. The neutral form dominates below pH 8 and the N1 deprotonated form dominates above pH 8.


2018 ◽  
Author(s):  
Sébastien Triboulet ◽  
Zainab Edoo ◽  
Fabrice Compain ◽  
Clément Ourghanlian ◽  
Adrian Dupuis ◽  
...  

In most bacteria, β-lactam antibiotics inhibit the last cross-linking step of peptidoglycan synthesis by acylation of the active-site Ser of D,D-transpeptidases belonging to the penicillin-binding protein (PBP) family. In mycobacteria, cross-linking is mainly ensured by L,D-transpeptidases (LDTs), which are promising targets for the development of β-lactam-based therapies for multidrug-resistant tuberculosis. For this purpose, fluorescence spectroscopy is used to investigate the efficacy of LDT inactivation by β-lactams but the basis for fluorescence quenching during enzyme acylation remains unknown. In contrast to what has been reported for PBPs, we show here using a model L,D-transpeptidase (Ldtfm) that fluorescence quenching of Trp residues does not depend upon direct hydrophobic interaction between Trp residues and β-lactams. Rather, Trp fluorescence was quenched by the drug covalently bound to the active-site Cys residue of Ldtfm. Fluorescence quenching was not quantitatively determined by the size of the drug and was not specific of the thioester link connecting the β-lactam carbonyl to the catalytic Cys as quenching was also observed for acylation of the active-site Ser of β-lactamase BlaC from M. tuberculosis. Fluorescence quenching was extensive for reaction intermediates containing an amine anion and for acylenzymes containing an imine stabilized by mesomeric effect, but not for acylenzymes containing a protonated β-lactam nitrogen. Together, these results indicate that the extent of fluorescence quenching is determined by the status of the β-lactam nitrogen. Thus, fluorescence kinetics can provide information not only on the efficacy of enzyme inactivation but also on the structure of the covalent adducts responsible for enzyme inactivation.


Author(s):  
Aleksandr Pestov ◽  
Aleksandr Mekhaev ◽  
Yuliya Privar ◽  
Natalya Prokuda ◽  
Evgeniy Modin ◽  
...  

Here, we report the results of screening of the catalytic activity of Pd-containing chitosan beads and cryogels in the cross-coupling reaction, hydrogenation of alkenes, nitro-, and carbonyl compounds and the hydrodechlorination of chlorophenols. Pd0-containing chitosan beads and cryogels show moderate catalytic activity in the reduction of alkenes and nitroaromatics. The conversion of nitroaromatics decreases for substrates with electron-withdrawing substituents, while the conversion of alkenes increases with the activation of carbon-carbon double bonds. For several substrates, a significant difference in kinetics and conversion degrees was observed for Pd nanoparticles supported on chitosan beads and cryogels. It was found that conversion in the hydrodechlorination reaction depends on substrate structure, being higher for substrates containing substituents with a positive mesomeric effect. Pd2+-chitosan catalysts showed high catalytic activity in cross-coupling (Heck reaction) offering the following advantages over known catalytic systems: lower reaction temperature, the selective functionalisation of C-I bonds, and the possibility to perform reactions with iodobenzene without base addition.


2018 ◽  
Vol 130 (7) ◽  
pp. 1820-1825 ◽  
Author(s):  
Ning-Shian Hsu ◽  
Yung-Lin Wang ◽  
Kuan-Hung Lin ◽  
Chi-Fon Chang ◽  
Syue-Yi Lyu ◽  
...  

2018 ◽  
Vol 57 (7) ◽  
pp. 1802-1807 ◽  
Author(s):  
Ning-Shian Hsu ◽  
Yung-Lin Wang ◽  
Kuan-Hung Lin ◽  
Chi-Fon Chang ◽  
Syue-Yi Lyu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document