Temperature Dependence of the Intervalley Deformation Potential of GaAs/AlAs Superlattices Under Hydrostatic Pressure

1997 ◽  
Vol 499 ◽  
Author(s):  
S. Guha ◽  
Q. Cai ◽  
M. Chandrasekhar ◽  
H. R. Chandrasekhar ◽  
Hyunjung Kim ◽  
...  

ABSTRACTWe have studied the pressure dependence of the type-I and type-II transitions in (GaAs)m/(AlAs)m superlattices by photoluminescence (PL) spectroscopy. From the study of PL linewidths of the type-I exciton as a function of pressure and temperature, we determine the intervalley deformation potential. Beyond the type-I and type-II crossover, the PL linewidth increases both as a function of pressure and temperature. We find that the electron-phonon deformation potential for Γ-X intervalley scattering varies with temperature.

1991 ◽  
Vol 59 (7) ◽  
pp. 806-808 ◽  
Author(s):  
M. Gerling ◽  
M.‐E. Pistol ◽  
L. Samuelson ◽  
W. Seifert ◽  
J.‐O. Fornell ◽  
...  

2012 ◽  
Vol 67 (1) ◽  
pp. 25-28 ◽  
Author(s):  
L. Straka ◽  
A. Soroka ◽  
H. Seiner ◽  
H. Hänninen ◽  
A. Sozinov

Author(s):  
Ronald S. Weinstein ◽  
N. Scott McNutt

The Type I simple cold block device was described by Bullivant and Ames in 1966 and represented the product of the first successful effort to simplify the equipment required to do sophisticated freeze-cleave techniques. Bullivant, Weinstein and Someda described the Type II device which is a modification of the Type I device and was developed as a collaborative effort at the Massachusetts General Hospital and the University of Auckland, New Zealand. The modifications reduced specimen contamination and provided controlled specimen warming for heat-etching of fracture faces. We have now tested the Mass. General Hospital version of the Type II device (called the “Type II-MGH device”) on a wide variety of biological specimens and have established temperature and pressure curves for routine heat-etching with the device.


Author(s):  
G. D. Gagne ◽  
M. F. Miller ◽  
D. A. Peterson

Experimental infection of chimpanzees with non-A, non-B hepatitis (NANB) or with delta agent hepatitis results in the appearance of characteristic cytoplasmic alterations in the hepatocytes. These alterations include spongelike inclusions (Type I), attached convoluted membranes (Type II), tubular structures (Type III), and microtubular aggregates (Type IV) (Fig. 1). Type I, II and III structures are, by association, believed to be derived from endoplasmic reticulum and may be morphogenetically related. Type IV structures are generally observed free in the cytoplasm but sometimes in the vicinity of type III structures. It is not known whether these structures are somehow involved in the replication and/or assembly of the putative NANB virus or whether they are simply nonspecific responses to cellular injury. When treated with uranyl acetate, type I, II and III structures stain intensely as if they might contain nucleic acids. If these structures do correspond to intermediates in the replication of a virus, one might expect them to contain DNA or RNA and the present study was undertaken to explore this possibility.


Author(s):  
T.A. Fassel ◽  
M.J. Schaller ◽  
M.E. Lidstrom ◽  
C.C. Remsen

Methylotrophic bacteria play an Important role in the environment in the oxidation of methane and methanol. Extensive intracytoplasmic membranes (ICM) have been associated with the oxidation processes in methylotrophs and chemolithotrophic bacteria. Classification on the basis of ICM arrangement distinguishes 2 types of methylotrophs. Bundles or vesicular stacks of ICM located away from the cytoplasmic membrane and extending into the cytoplasm are present in Type I methylotrophs. In Type II methylotrophs, the ICM form pairs of peripheral membranes located parallel to the cytoplasmic membrane. Complex cell wall structures of tightly packed cup-shaped subunits have been described in strains of marine and freshwater phototrophic sulfur bacteria and several strains of methane oxidizing bacteria. We examined the ultrastructure of the methylotrophs with particular view of the ICM and surface structural features, between representatives of the Type I Methylomonas albus (BG8), and Type II Methylosinus trichosporium (OB-36).


Sign in / Sign up

Export Citation Format

Share Document