Hydrogen Diffusion in Boron Doped Diamond: Evidence of Hydrogen-Boron Interactions

1998 ◽  
Vol 510 ◽  
Author(s):  
J. Chevallier ◽  
B. Theys ◽  
C. Grattepain ◽  
A. Deneuville ◽  
E. Gheeraert

AbstractDeuterium diffusion has been investigated in boron doped diamond as a function of the diffusion temperature and the boron concentration. The results show that, up to 480°C, hydrogen diffusion is limited by the boron concentration with a diffusion activation energy of 0.35 eV for [B] = 5×1019 cm−3. This first experimental evidence of deuterium-boron interactions in diamond is interpreted as the result of hydrogen ionization and diffusion of fairly mobile protons which form pairs with negatively charged boron acceptors

1995 ◽  
Vol 377 ◽  
Author(s):  
Chris G. Van De Walle ◽  
R. A. Street

ABSTRACTDespite its importance for technological applications, the behavior of hydrogen in amorphous silicon is not fully understood. In particular, the anomalously low activation energy (1.5 eV) for hydrogen diffusion has remained unexplained. We investigate the interaction of hydrogen with dangling bonds using first-principles pseudopotential-density-functional calculations. Our analysis shows that the diffusion activation energy should be measured from the hydrogen chemical potential, and that this level should be identified with the formation energy of Si-H bonds. A quantitative identification of the energy levels with experimental observables is then possible.


1995 ◽  
Vol 416 ◽  
Author(s):  
R. Job ◽  
A. V. Denisenko ◽  
A. M. Zaitsev ◽  
M. Werner ◽  
A. A. Melnikov ◽  
...  

ABSTRACTp-type semiconducting boron doped layers have been fabricated on diamond substrates by ion implantation and subsequent annealing. A number of the related published experimental data and theoretical models on electrical properties of boron doped diamond are analyzed with regard to the temperature coefficient of resistance (TCR) of temperature sensors. The dependencies of the conductivity and activation energy on three parameters: (i) boron doping level NA, (ii) electrical compensation ratio ND/NA- C and (iii) duration of the postimplantation annealing time ta are studied. By variation of NA, C and t, an optimized technological regime for the temperature sensor fabrication can be obtained. One can summarize that: 1) the TCR value is not remarkably reduced with the boron concentration up to NA -1019 cm-3, 2) an increase of the electrical compensation decreases the activation energy and consequently the TCR coefficient,3) 1 h annealing at 1500°C is sufficient to remove the compensating radiation defects, 4) the variation of the ta from 1 min to 1 h changes the TCR value by 20% to 30%. Technological steps of the fabrication of a micro temperature sensor are given.


2016 ◽  
Vol 4 (34) ◽  
pp. 8104-8110 ◽  
Author(s):  
S. Arash Sheikholeslam ◽  
Hegoi Manzano ◽  
Cristian Grecu ◽  
André Ivanov

Hydrogen diffusion activation energy in amorphous silicon dioxide is reduced by straining the material, which can reduce aging of MOSFETs.


2018 ◽  
Vol 4 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Nikolay A. Kalanda

Polycrystalline Sr2FeMoO6-δ specimens have been obtained by solid state synthesis from partially reduced SrFeO2,52 and SrMoO4 precursors. It has been shown that during oxygen desorption from the Sr2FeMoO6-δ compound in polythermal mode in a 5%H2/Ar gas flow at different heating rates, the oxygen index 6-δ depends on the heating rate and does not achieve saturation at T = 1420 K. Oxygen diffusion activation energy calculation using the Merzhanov method has shown that at an early stage of oxygen desorption from the Sr2FeMoO6-δ compound the oxygen diffusion activation energy is the lowest Еа = 76.7 kJ/mole at δ = 0.005. With an increase in the concentration of oxygen vacancies, the oxygen diffusion activation energy grows to Еа = 156.3 kJ/mole at δ = 0.06. It has been found that the dδ/dt = f (Т) and dδ/dt = f (δ) functions have a typical break which allows one to divide oxygen desorption in two process stages. It is hypothesized that an increase in the concentration of oxygen vacancies Vo•• leads to their mutual interaction followed by ordering in the Fe/Mo-01 crystallographic planes with the formation of various types of associations.


Sign in / Sign up

Export Citation Format

Share Document