Hydrogen and Hydrogen-Related Defects in CVD Diamond

1998 ◽  
Vol 513 ◽  
Author(s):  
K. M. McNamara Rutledge

ABSTRACTHydrogen is a detrimental impurity in many chemical vapor deposited (CVD) materials, particularly those involved in electronic or optical applications. For example, active hydrogen defects have been observed in materials such as silicon, Si, gallium arsenide, GaAs, and diamond, C, thin films. Hydrogen and its related defects can be identified, quantified, and observed using magnetic resonance techniques. These techniques allow a unique quantitative, non-destructive view of hydrogen in the solid-state. Nuclear magnetic resonance (NMR) is used to study hydrogenated defects directly, while electron paramagnetic resonance (EPR) is used to observe hydrogen associated with paramagnetic defects. These observations can enhance our understanding of the effects of hydrogen incorporation on the properties of such materials.

2009 ◽  
Vol 156-158 ◽  
pp. 145-148 ◽  
Author(s):  
Daniel Kropman ◽  
E. Mellikov ◽  
K. Lott ◽  
Tiit Kärner ◽  
Ivo Heinmaa ◽  
...  

The results of investigation of the point defect generation and interaction with impurities in the Si-SiO2 system during the process of its formation by means of electron paramagnetic resonance (EPR) and nucleous magnetic resonance (NMR) technique are presented. It has been shown that the diference in point defects interaction with hydrogen at the Si-SO2 interface with n- and p-type conductivity are connected with the sign of hydrogen ions incorporation dependence on the Fermi level position in accordance with the proposed model. The interface properties may be improved by laser irradiation.


1990 ◽  
Vol 5 (8) ◽  
pp. 1591-1594 ◽  
Author(s):  
A. V. Hetherington ◽  
C. J. H. Wort ◽  
P. Southworth

The crystalline perfection of microwave plasma assisted chemical vapor deposited (MPACVD) diamond films grown under various conditions has been examined by TEM. Most CVD diamond films thus far reported contain a high density of defects, predominantly twins and stacking faults on {111} planes. We show that under appropriate growth conditions, these planar defects are eliminated from the center of the crystallites, and occur only at grain boundaries where the growing crystallites meet.


1985 ◽  
Vol 61 ◽  
Author(s):  
Robert N. Schwartz ◽  
Marion D. Clark ◽  
Walee Chamulitrat ◽  
Larry Kevan

ABSTRACTElectron paramagnetic resonance (EPR) spectroscopy has been used to identify paramagnetic intrinsic bonding defects and impurities in as-deposited thin solid SiO2 films. Thin films grown by E-beam vacuum deposition, RF sputtering, thermal oxidation of polysilicon, plasma enhanced chemical vapor deposition (PECVD), and low pressure chemical vapor deposition (LPCVD) techniques have been examined. Some of the growth techniques yield films that have paramagnetic centers similar to those found in bulk radiation-damaged vitreous SiO2. A new temperature dependent EPR center was observed in PECVD SiO2 films and has been assigned to trapped NO2. Slow-motional EPR lineshape theory was used to analyze the temperature dependent spectra.


Sign in / Sign up

Export Citation Format

Share Document