Hybrid Organic-Inorganic Electrode-Membranes Based on Organo-Polysiloxane/Macrocycle Systems

1998 ◽  
Vol 519 ◽  
Author(s):  
A. Jiménez-Morales ◽  
J.C. Galvan ◽  
P. Aránda ◽  
E. Ruiz-Hitzky

AbstractSpecific complexing agents for alkaline ions such as some crown-ethers of different intramolecular cavity size (12-crown-4, 15-crown-5 and 18-crown-6) are incorporated into a organo-polyorganosiloxane network generated via the sol-gel process. The resulting xerogels embody macrocycle compounds with different ion-selectivity. These xerogels are deposited onto porous supports (borosilicate, polyacrylonitrile,…) to obtain new composite electrode- membranes. The electrochemical characterization of the membranes and the electrode- membranes by electrochemical impedance spectroscopy (EIS) shows information about the reversible behavior and the ion resistance of the membranes, which are a function of both, nature and content of the entrapped macrocycle as well as the salt solution concentration. The electrochemical response of these systems acting as electrode-membranes shows their sensitivity towards different metal ions at variable concentrations.

Author(s):  
Atef Y. Shenouda ◽  
M. M. S. Sanad

Li2NixFe1−xSiO4 (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) samples were prepared by sol–gel process. The crystal structure of prepared samples of Li2NixFe1−xSiO4 was characterized by XRD. The different crystallographic parameters such as crystallite size and lattice cell parameters have been calculated. Scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR) investigations were carried out explaining the morphology and function groups of the synthesized samples. Furthermore, electrochemical impedance spectra (EIS) measurements are applied. The obtained results indicated that the highest conductivity is achieved for Li2Ni0.4Fe0.6SiO4 electrode compound. It was observed that Li/Li2Ni0.4Fe0.6SiO4 battery has initial discharge capacity of 164 mAh g−1 at 0.1 C rate. The cycle life performance of all Li2NixFe1−xSiO4 batteries was ranged between 100 and 156 mAh g−1 with coulombic efficiency range between 70.9% and 93.9%.


2004 ◽  
Vol 347 (1-3) ◽  
pp. 138-143 ◽  
Author(s):  
Hua-Kuo Chen ◽  
Hsin-Chin Hung ◽  
Thomas C.-K. Yang ◽  
Sea-Fue Wang
Keyword(s):  
Sol Gel ◽  

ChemInform ◽  
1989 ◽  
Vol 20 (9) ◽  
Author(s):  
T. HAMASAKI ◽  
K. EGUCHI ◽  
Y. KOYANAGI ◽  
A. MATSUMOTO ◽  
T. UTSUNOMIYA ◽  
...  

1991 ◽  
Vol 24 (6) ◽  
pp. 1431-1434 ◽  
Author(s):  
Timothy E. Long ◽  
Larry W. Kelts ◽  
S. Richard Turner ◽  
Jeffrey A. Wesson ◽  
Thomas H. Mourey

2010 ◽  
Vol 1278 ◽  
Author(s):  
L.L. Díaz-Flores ◽  
A. S. López Rodríguez ◽  
P. SifuentesGallardo ◽  
M.A. Hernàndez Rivera ◽  
M.a Garnica Romo ◽  
...  

AbstractThis work is about the production of hybrid coatings of the system SiO2-PMMA (PMMA, polymethylmethacrylate). These materials have interesting mechanical and chemical properties useful for anticorrosive and wear resistance applications. SiO2-PMMA hybrids were obtained by the sol-gel traditional process, using tetraethylorthosilicate (TEOS) and methylmethacrylate (MMA) by Aldrich Co, as starting reagents. The SiO2:PMMA ratio was varied from 0:1 to about 1:1 at air atmosphere deposition. The coatings were obtained on acrylic sheets and silicon wafers. A diversity of coatings with chemical composition ranging from SiO2 and PMMA to obtain the SiO2-PMMA hybrids were obtained. Infrared (IR) and atomic force microscopy (AFM), were performed to determinate structural and morphological behavior.


Sign in / Sign up

Export Citation Format

Share Document