Infrared Characterization of PMMA-SiO2 Hybrid Glasses Obtained by Sol-Gel Process

2010 ◽  
Vol 1278 ◽  
Author(s):  
L.L. Díaz-Flores ◽  
A. S. López Rodríguez ◽  
P. SifuentesGallardo ◽  
M.A. Hernàndez Rivera ◽  
M.a Garnica Romo ◽  
...  

AbstractThis work is about the production of hybrid coatings of the system SiO2-PMMA (PMMA, polymethylmethacrylate). These materials have interesting mechanical and chemical properties useful for anticorrosive and wear resistance applications. SiO2-PMMA hybrids were obtained by the sol-gel traditional process, using tetraethylorthosilicate (TEOS) and methylmethacrylate (MMA) by Aldrich Co, as starting reagents. The SiO2:PMMA ratio was varied from 0:1 to about 1:1 at air atmosphere deposition. The coatings were obtained on acrylic sheets and silicon wafers. A diversity of coatings with chemical composition ranging from SiO2 and PMMA to obtain the SiO2-PMMA hybrids were obtained. Infrared (IR) and atomic force microscopy (AFM), were performed to determinate structural and morphological behavior.

2012 ◽  
Vol 10 (5) ◽  
pp. 1574-1583 ◽  
Author(s):  
Dalia Jonynaite ◽  
Darius Jasaitis ◽  
Rimantas Raudonis ◽  
Algirdas Selskis ◽  
Remigijus Juskenas ◽  
...  

AbstractIn the present work, the formation of cobalt aluminium spinel (CoAl2O4) as well as novel cobalt neodymium-aluminates with nominal compositions of CoAl1.75Nd0.25O4, CoAl1.5Nd0.5O4 and CoAlNdO4 by an aqueous sol-gel process and the sinterability of the products are investigated. The metal ions, generated by dissolving starting materials of metals in the diluted acetic acid were complexed by 1,2-ethanediol to obtain the precursors for the mixed metal ceramics. The phase purity of the synthesized compounds was characterized by powder X-ray diffraction analysis and infrared spectroscopy. The microstructural evolution and morphological features of the products were studied by scanning electron microscopy and atomic force microscopy, which together with the optical characterization of these new compounds showed that the sol-gel-derived materials could be successfully used as effective cobalt-based ceramic pigments.


2007 ◽  
Vol 544-545 ◽  
pp. 1013-1016
Author(s):  
Hae Suck Park ◽  
Dong Hwan Suh ◽  
Dong Hun Lee ◽  
Whan Gi Kim

Novel bisphenol-based wholly aromatic poly(ether ketone)/poly(ether sulfone) copolymers containing pendant sulfonate groups were prepared by direct aromatic nucleophilic substitution polycondensation of 4,4-difluoro-3,3’-disodiumsulfonylbenzophenone (40mol% of bisphenol), difluorophenylsulfone and bisphenol A. Organic-inorganic composite membranes were obtained by mixing organic polymers with hydrophilic SiO2 (ca. 20nm) obtained by sol-gel process. The physic-chemical properties of these composite membranes were studied by thermogravimetry analysis(TGA), differential scanning calorimetry (DSC) and transform infrared(FTIR) spectroscopy. Scanning electron microscopy (SEM) and atomic Force microscopy (AFM) were used to observe the surface of membrances. The proton conductivity as a function of temperature decreased as SiO2 content increased, but water uptake increased. The membranes were shown all requisite properties; IEC (1.5meq./g), thermal stablity (Tg= 185°C), and low affinity towards methanol (1.5x10-7 - 4.3x10-7 cm2/S).


2016 ◽  
Vol 15 (01n02) ◽  
pp. 1650002 ◽  
Author(s):  
S. Lourduraj ◽  
R. Victor Williams

The nanocrystalline TiO2 powder was synthesized by sol–gel method. The XRD analysis reveals that TiO2 powder was highly crystalline (anatase phase) and nanostructured with tetragonal system. The average crystallite size after calcined at 673[Formula: see text]K is found to be 7.7[Formula: see text]nm. The surface morphological studies using scanning electron microscopy (SEM) exhibit that the formation of nanosized TiO2 particles with less densification nature. Atomic force microscopy (AFM) topography exhibits the uniform distribution of spherical-shaped particles. The energy dispersive X-ray spectroscopy (EDX) confirms the presence of Titanium and Oxygen in synthesized TiO2 nanopowder. The value of optical bandgap of TiO2 nanopowder calculated from UV-Visible spectrum is 3.45[Formula: see text]eV. The presence of TiO2 particles is confirmed from the dominant fourier transform infrared (FTIR) peaks at 621[Formula: see text]cm[Formula: see text] and 412[Formula: see text]cm[Formula: see text].


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Patrycja Wojciechowska ◽  
Zenon Foltynowicz ◽  
Marek Nowicki

In this study novel organic-inorganic hybrid nanocomposites were synthesized from modified cellulose acetate propionate (MCAP) via sol-gel reaction at ambient temperature. The inorganic phase was introduced in situ by hydrolysis-condensation of tetraethoxysilane (TEOS) in different concentrations, under acid catalysis, in the presence of organic polymer dissolved in acetone. The chemical modification of CAP was monitored by infrared spectroscopy (IR). The nanocomposites structure was characterized by IR analysis and solid state29Si NMR studies. The spectral data revealed that organic and inorganic phases are linked through covalent bound. Surface morphology of the samples and the degree of dispersion of inorganic phase in the polymer matrix were investigated using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The actual incorporation of the inorganic component into the hybrid nanocomposites was deducted from the residual weight according to thermogravimetric analysis (TGA).


1999 ◽  
Vol 9 (5) ◽  
pp. 1149-1154 ◽  
Author(s):  
Geneviève Cerveau ◽  
Robert J. P. Corriu ◽  
Cédric Fischmeister-Lepeytre

2015 ◽  
Vol 754-755 ◽  
pp. 1115-1119 ◽  
Author(s):  
A.S. Ibraheam ◽  
Y. Al-Douri ◽  
Uda Hashim

Cu2Zn0.8Cd0.2SnS4 pentrary alloy nanostructure were prepared and deposited on glass substrates with different copper concentrations ( 0.3, 0.5, 0.7 and 0.9 mol/L ) using Sol gel – spin coating method.morphological and analytical studies were investigated by Field Emission-Scanning Electron Microscope (FE-SEM), atomic force microscopy (AFM). It is found that the average grain size of Cu2Zn0.8Cd0.2SnS4 pentrary alloy nanostructure is 51.92 to 76.43 nm for the thin films prepared at 0.3, 0.5, 0.7 and 0.9 mol/L respectively .


2004 ◽  
Vol 19 (5) ◽  
pp. 1492-1498 ◽  
Author(s):  
Stacey W. Boland ◽  
Suresh C. Pillai ◽  
Wein-Duo Yang ◽  
Sossina M. Haile

Solid solution Pb1-xBaxTiO3, with particular emphasis on Pb0.5Ba0.5TiO3, was prepared using a sol-gel process incorporating lead acetate trihydrate, barium acetate, and titanium isopropoxide as precursors, acetylacetone (2,4 pentanedione) as a chelating agent, and ethylene glycol as a solvent. The synthesis procedure was optimized by systematically varying acetylacetone: Ti and H2O:Ti molar ratios and calcination temperature. The resulting effects on sol and powder properties were studied using thermogravimetric analysis/differential scanning calorimetry, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, and x-ray diffraction (XRD). Crystallization of the perovskite structure occurred at a temperature as low as 450 °C. Thin films were prepared by spin coating on (100) MgO. Pyrolysis temperature and heating rate were varied, and the resultant film properties investigated using field-emission scanning electron microscopy, atomic force microscopy, and XRD. Under optimized conditions, highly oriented films were obtained at a crystallization temperature of 600 °C.


2011 ◽  
Vol 55-57 ◽  
pp. 1506-1510 ◽  
Author(s):  
Jing Wei ◽  
Xin Tan ◽  
Tao Yu ◽  
Lin Zhao

A series of Y/TiO2nanoparticles (NPs) were synthesized via sol-gel method. The crystal structures, morphologies and chemical properties were characterized using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). We investigated the effects of different doping amounts of Y on the reaction of CO2photoreduction. The results shown that 0.1 wt.%Y/TiO2(0.1YT) performed the highest photocatalytic activity, which yielded 384.62 µmol/g∙cat. formaldehyde after 6 h of UV illumination.


Sign in / Sign up

Export Citation Format

Share Document