Effect of Formation and Growth of Dislocation Loops and Cavities on Low-Temperature Swelling of Irradiated Uranium-Molybdenum Alloys
AbstractScanning electron photomicrographs of U–10 wt.% Mo irradiated at low temperature in the Advanced Test Reactor (ATR) to about 40 at.% burnup show the presence of cavities. We have used a rate-theory-based model to investigate the nucleation and growth of cavities during low-temperature irradiation of uranium-molybdenum alloys in the presence of irradiation-induced interstitial-loop formation and growth. Our calculations indicate that the swelling mechanism in the U–10 wt.% Mo alloy at low irradiation temperatures is fission-gas driven. The calculations also indicate that the observed bubbles must be associated with a subgrain structure. Calculated bubble-size-distributions are compared with irradiation data.