Atomic Displacement Parameters: A Useful Tool in the Search for New Thermoelectric Materials?

1998 ◽  
Vol 545 ◽  
Author(s):  
B. C. Sales ◽  
B. C. Chakoumakos ◽  
D. Mandrus ◽  
J. W. Sharp ◽  
N. R. Dilley ◽  
...  

AbstractThe atomic displacement parameters (ADPs) measure the mean-square displacement amplitude of an atom about its equilibrium position in a crystal. It is demonstrated that the ADPs can be used to identify crystalline solids with unusually low lattice thermal conductivties. A low lattice thermal conductivity is essential in the design of thermoelectric materials with improved efficiencies.The atomic displacement parameters (ADPs) have been measured using powder neutron diffraction as a function of temperature for several clathrate-like compounds (RxCo4-yFeySb12, where R= La, Ce, Yb or TI, x=0.22, 0.8, 1, y=0, 1;Tl2SnTe5 and Tl2GeTe5). The ADP data show that in each of the compounds one of the atoms is weakly bound and “rattles” within its atomic cage. This atomic “rattling” severely reduces the ability of these crystals to conduct heat and in some cases the lattice thermal conductivity approaches the theoretical minimum value. In many clathrate-like compounds, the ADP can also be used to estimate the Einstein frequency of the “rattler”, and to predict the existence of localized vibrational modes.

2000 ◽  
Vol 626 ◽  
Author(s):  
B. C. Sales ◽  
B. C. Chakoumakos ◽  
D. Mandrus

ABSTRACTNew bulk thermoelectric compounds are normally discovered with the aid of simple qualitative structure-property relationships. Most good thermoelectric materials are narrow gap semiconductors composed of heavy elements with similar electronegativities. The crystal structures are usually of high symmetry (cubic, hexagonal, and possibly tetragonal), and often contain a large number of atoms per unit cell. In the present work a new structure-property relationship is discussed which links atomic displacement parameters (ADPs) and the lattice thermal conductivity of clathrate-like compounds. For many clathrate-like compounds, in which one of the atom-types is weakly bound and “rattles” within its atomic cage, room temperature ADP information can be used to estimate the room temperature lattice thermal conductivity, the vibration frequency of the “rattler”, and the temperature dependence of the heat capacity. ADPs are reported as part of the crystal structure description, and hence APDs represent some of the first information that is known about a new compound. For most ternary and quaternary compounds, all that is known is its crystal structure. ADP information thus provides a useful screening tool for the large and growing crystallographic databases. Examples of the use and limitations of this analysis are presented for several promising classes of thermoelectric materials.


2007 ◽  
Vol 1044 ◽  
Author(s):  
Katsushi Tanaka ◽  
Jung-Hwan Kim ◽  
Kyosuke Kishida ◽  
Haruyuki Inui

AbstractEinstein temperatures of guest atoms in Ba-Ge-(Al, In) type-III clathrate compounds have been estimated from the temperature dependence of the atomic displacement parameters determined by synchrotron X-ray powder diffractions. The lowest temperature is obtained for the vibration of Ba(2) atoms along the x-direction, which corresponds to the “rattling motion” of the guest atoms in the compounds. The temperature estimated is significantly low of about 50 K, which agrees with the fact that the compounds have small lattice thermal conductivities of about 0.6 W/mK. Though the lattice thermal conductivity of Ba24Ge88Al12 is larger than that of Ba24Ge88In12, the Einstein temperature of Ba24Ge88Al12 is slightly smaller than that of Ba24Ge88In12. This discrepancy can be explained by the consideration of higher Debye temperature of Ba24Ge88Al12 than that of Ba24Ge88In12, that is, lattice thermal conductivity without “rattling motion” is larger for Ba24Ge88Al12 than that for Ba24Ge88In12.


1998 ◽  
Vol 545 ◽  
Author(s):  
Jeff W. Sharp ◽  
Brian C. Sales ◽  
David G. Mandrus ◽  
Bryan C. Chakoumakos

AbstractWe present initial assessments of the thermoelectric properties of two ternary tellurides with known crystal structures, Tl2GeTeM5 and Tl2SnTe5. Tl2SnTe5 appears to have a p-type figure of merit about the same as that of Bi2Te3, the best thermoelectric material among binary compounds. A good figure of merit is possible because the lattice thermal conductivity is very low. Based on neutron diffraction data, we have calculated atomic displacement parameters and thermal expansion coefficients. The atomic displacement parameters give some understanding of the low lattice thermal conductivity.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Đorđe Dangić ◽  
Olle Hellman ◽  
Stephen Fahy ◽  
Ivana Savić

AbstractThe proximity to structural phase transitions in IV-VI thermoelectric materials is one of the main reasons for their large phonon anharmonicity and intrinsically low lattice thermal conductivity κ. However, the κ of GeTe increases at the ferroelectric phase transition near 700 K. Using first-principles calculations with the temperature dependent effective potential method, we show that this rise in κ is the consequence of negative thermal expansion in the rhombohedral phase and increase in the phonon lifetimes in the high-symmetry phase. Strong anharmonicity near the phase transition induces non-Lorentzian shapes of the phonon power spectra. To account for these effects, we implement a method of calculating κ based on the Green-Kubo approach and find that the Boltzmann transport equation underestimates κ near the phase transition. Our findings elucidate the influence of structural phase transitions on κ and provide guidance for design of better thermoelectric materials.


2007 ◽  
Vol 1044 ◽  
Author(s):  
Mi-kyung Han ◽  
Huijun Kong ◽  
Ctirad Uher ◽  
Mercouri G Kanatzidis

AbstractWe performed comparative investigations of the Ag1-xPb18MTe20 (M = Bi, Sb) (x = 0, 0.14, 0.3) system to better understand the roles of Sb and Bi on the thermoelectric properties. In both systems, the electrical conductivity nearly keeps the same values, while the Seebeck coefficient decreases dramatically in going from Sb to Bi. Compared to the lattice thermal conductivity of PbTe, that of AgPb18BiTe20 is substantially reduced. The lattice thermal conductivity of the Bi analog, however, is higher than that of AgPb18SbTe20 and this is attributed largely to the decrease in the degree of mass fluctuation between the nanostructures and the matrix (for the Bi analog). As a result the dimensionless figure of merit ZT of Ag1-xPb18MTe20 (M = Bi) is found to be smaller than that of Ag1-xPb18MTe20 (M = Sb).


2021 ◽  
Vol 33 (4) ◽  
pp. 1140-1148
Author(s):  
Hao Zhu ◽  
Chenchen Zhao ◽  
Pengfei Nan ◽  
Xiao-ming Jiang ◽  
Jiyin Zhao ◽  
...  

2021 ◽  
Author(s):  
Un-Gi Jong ◽  
Chol-Hyok Ri ◽  
Chol-Jin Pak ◽  
Chol-Hyok Kim ◽  
Stefaan Cottenier ◽  
...  

In the search for better thermoelectric materials, metal phosphides have not been considered to be viable candidates so far, due to their large lattice thermal conductivity. Here we study thermoelectric...


2019 ◽  
Vol 34 (3) ◽  
pp. 260 ◽  
Author(s):  
SHEN Jia-Jun ◽  
FANG Teng ◽  
FU Tie-Zheng ◽  
XIN Jia-Zhan ◽  
ZHAO Xin-Bing ◽  
...  

2010 ◽  
Vol 11 (4) ◽  
pp. 044306 ◽  
Author(s):  
Chunlei Wan ◽  
Yifeng Wang ◽  
Ning Wang ◽  
Wataru Norimatsu ◽  
Michiko Kusunoki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document