Amorphous Ni-Zr Phase Formation in Self-Supporting Thin-Film Lateral-Diffusion Couples

1985 ◽  
Vol 57 ◽  
Author(s):  
J. C. Barbour ◽  
J. W. Mayer

AbstractThe formation of an amorphous Ni-Zr alloy, by heating to cause interdiffusion in the temperature range 250°C to 325°C, was demonstrated in a self-supporting lateral-diffusion couple. Micro-area diffraction in a scanning transmission electron microscope (STEM) indicates that microcrystalline ordering in the amorphous phase must be on a scale less than 5 nm. The samples were heated in a vacuum furnace to form the amorphous phase and later heated in the STEM for in situ observation of crystalline compoundformation. The amorphous to crystalline transformation occurs first in theZr-rich regions at 370°C. A crystalline phase begins to consume the Ni rich amorphous material, at 450° C; but at 325° C, the amorphous phase is stable up to 20.5 hours, even in the presence of crystalline compounds.

1993 ◽  
Vol 308 ◽  
Author(s):  
Paul R. Besser ◽  
Thomas N. Marieb ◽  
John C. Bravman

ABSTRACTStrain relaxation in passivated Al-0.5% Cu lines was measured using X-ray diffraction coupled with in-situ observation of the formation and growth of stress induced voids. Samples of 1 μm thick Al-0.5% Cu lines passivated with Si3N4 were heated to 380ºC, then cooled and held at 150ºC. During the test, principal strains along the length, width, and height of the line were determined using a grazing incidence x-ray geometry. From these measurements the hydrostatic strain in the metal was calculated and strain relaxation was observed. The thermal cycle was duplicated in a high voltage scanning transmission electron microscope equipped with a backscattered electron detector. The 1.25 μm wide lines were seen to have initial stress voids. Upon heating these voids reduced in size until no longer observable. Once the samples were cooled to 150ºC, voids reappeared and grew. The measured strain relaxation is discussed in terms of void and θ-phase (Al2Cu) formation.


Author(s):  
Mihaela Albu ◽  
Bernd Panzirsch ◽  
Hartmuth Schröttner ◽  
Stefan Mitsche ◽  
Klaus Reichmann ◽  
...  

Powder and SLM additively manufactured parts of X5CrNiCuNb17-4 maraging steel were systematically investigated by electron microscopy to understand the relationship between the properties of the powder grains and the microstructure of the printed parts. We prove that satellites, irregularities and superficial oxidation of powder particles can be transformed into an advantage through the formation of nanoscale (AlMnSiTiCr)-oxides in the matrix during the printing process. The nano-oxides showed extensive stability in terms of size, spherical morphology, chemical composition and crystallographic disorder upon in situ heating up to 950°C in the scanning transmission electron microscope. Their presence thus indicates a potential for oxide-dispersive strengthening of this steel, which may be beneficial for creep resistance at elevated temperatures. The nucleation of copper clusters and their evolution into nanoparticles as well as the precipitation of Ni and Cr particles upon in situ heating have as well been systematically documented.


1995 ◽  
Vol 398 ◽  
Author(s):  
U. Herr ◽  
M. Poilack ◽  
D.L. Olynick ◽  
J.M. Gibson ◽  
R.S. Averback

ABSTRACTDisordered clusters of the intermetallic compounds Ni3Al and Cu3Au have been produced using a high pressure sputtering technique. The clusters are either embedded in a film or studied, in-situ in an UHV electron microscope. The evolution of the ordered structure upon annealing is studied. Using a scanning transmission electron microscope, electron diffraction is obtained from individual clusters. Partial ordering is observed in Cu3Au clusters which have been annealed below the bulk order-disorder transition temperature. Under the experimental conditions, only clusters with sizes of 10–15 nm or larger show ordering.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7784
Author(s):  
Mihaela Albu ◽  
Bernd Panzirsch ◽  
Hartmuth Schröttner ◽  
Stefan Mitsche ◽  
Klaus Reichmann ◽  
...  

Powder and selective laser melting (SLM) additively manufactured parts of X5CrNiCuNb17-4 maraging steel were systematically investigated by electron microscopy to understand the relationship between the properties of the powder grains and the microstructure of the printed parts. We prove that satellites, irregularities and superficial oxidation of powder particles can be transformed into an advantage through the formation of nanoscale (AlMnSiTiCr) oxides in the matrix during the printing process. The nano-oxides showed extensive stability in terms of size, spherical morphology, chemical composition and crystallographic disorder upon in situ heating in the scanning transmission electron microscope up to 950 °C. Their presence thus indicates a potential for oxide-dispersive strengthening of this steel, which may be beneficial for creep resistance at elevated temperatures. The nucleation of copper clusters and their evolution into nanoparticles, and the precipitation of Ni and Cr particles upon in situ heating, have been systematically documented as well.


2014 ◽  
Vol 20 (2) ◽  
pp. 323-329 ◽  
Author(s):  
Nestor J. Zaluzec ◽  
M. Grace Burke ◽  
Sarah J. Haigh ◽  
Matthew A. Kulzick

AbstractThe use of analytical spectroscopies during scanning/transmission electron microscope (S/TEM) investigations of micro- and nano-scale structures has become a routine technique in the arsenal of tools available to today’s materials researchers. Essential to implementation and successful application of spectroscopy to characterization is the integration of numerous technologies, which include electron optics, specimen holders, and associated detectors. While this combination has been achieved in many instrument configurations, the integration of X-ray energy-dispersive spectroscopy and in situ liquid environmental cells in the S/TEM has to date been elusive. In this work we present the successful incorporation/modifications to a system that achieves this functionality for analytical electron microscopy.


Author(s):  
Xu Lu ◽  
Dong Wang ◽  
Di Wan ◽  
Xiaofei Guo ◽  
Roy Johnsen

AbstractIn this study, the effect of hydrogen on dislocation and twinning behavior along various grain boundaries in a high-manganese twinning-induced plasticity steel was investigated using an in situ micropillar compression test. The compressive stress in both elastic and plastic regimes was increased with the presence of hydrogen. Further investigation by transmission electron backscatter diffraction and scanning transmission electron microscope demonstrated that hydrogen promoted both dislocation multiplication and twin formation, which resulted in higher stress concentration at twin–twin and twin–grain boundary intersections.


Sign in / Sign up

Export Citation Format

Share Document