X-ray Energy-Dispersive Spectrometry During In Situ Liquid Cell Studies Using an Analytical Electron Microscope

2014 ◽  
Vol 20 (2) ◽  
pp. 323-329 ◽  
Author(s):  
Nestor J. Zaluzec ◽  
M. Grace Burke ◽  
Sarah J. Haigh ◽  
Matthew A. Kulzick

AbstractThe use of analytical spectroscopies during scanning/transmission electron microscope (S/TEM) investigations of micro- and nano-scale structures has become a routine technique in the arsenal of tools available to today’s materials researchers. Essential to implementation and successful application of spectroscopy to characterization is the integration of numerous technologies, which include electron optics, specimen holders, and associated detectors. While this combination has been achieved in many instrument configurations, the integration of X-ray energy-dispersive spectroscopy and in situ liquid environmental cells in the S/TEM has to date been elusive. In this work we present the successful incorporation/modifications to a system that achieves this functionality for analytical electron microscopy.

Author(s):  
M. Tamizifar ◽  
G. Cliff ◽  
R.W. Devenish ◽  
G.W. Lorimer

Small additions of copper, <1 wt%, have a pronounced effect on the ageing response of Al-Mg-Si alloys. The object of the present investigation was to study the effect of additions of copper up to 0.5 wt% on the ageing response of a series of Al-Mg-Si alloys and to use high resolution analytical electron microscopy to determine the composition of the age hardening precipitates.The composition of the alloys investigated is given in Table 1. The alloys were heat treated in an argon atmosphere for 30m, water quenched and immediately aged either at 180°C for 15 h or given a duplex treatment of 180°C for 15 h followed by 350°C for 2 h2. The double-ageing treatment was similar to that carried out by Dumolt et al. Analyses of the precipitation were carried out with a HB 501 Scanning Transmission Electron Microscope. X-ray peak integrals were converted into weight fractions using the ratio technique of Cliff and Lorimer.


Author(s):  
L. E. Thomas

Continuing evolution of energy-dispersive x-ray spectrometer (EDS) systems has greatly advanced x-ray detector performance in analytical electron microscopes. The latest detectors offer improved energy resolution, count rate performance, geometrical collection efficiency, durability, and efficiency for light and heavy elements. Innovative detector designs for transmission and scanning transmission electron microscopes (TEM/STEMs) include such features as liquid-nitrogen-free operation, in situ de-icing of the detector crystal, user cleanable windows, demountable windows, ultrahigh vacuum compatibility (including adaptations to allow microscope bakeouts without removing the detector), beam damage protection, and microscope interfaces with optimized collection geometries. Divergent design philosophies have produced a variety of systems with specialized features, and users may face hard choices in selecting the best detector for the job. The aim of this paper is to review the current state of EDS detector development and the importance of the performance improvements to TEM/STEM users.


Author(s):  
Sooho Kim

Automotive catalysts have a general loss of activity during aging, basically due to two principal deactivation mechanisms. One of them is thermally induced “sintering,” which results in catalytic surface area reduction. The other is chemically induced “poisoning,” which in part causes blockage of active metal sites. The conventional bulk techniques have indicated that various catalyst functions were affected differently by poisons and thermal damage; however, they generally did not provide detailed descriptions of the mechanisms of deactivation. Only analytical electron microscopy (AEM) can provide microchemical and microstructural information to gain a more thorough and fundamental understanding of catalytic deactivation.Fresh and vehicle-aged commercial automotive catalysts containing Pt, Pd, and Rh on alumina supports were prepared for AEM by a microtomy technique, which retains the spatial integrity of the catalyst pellet with uniform thickness. Then these AEM specimens were characterized in a transmission electron microscope (TEM) and in a dedicated scanning transmission electron microscope (STEM).


Sign in / Sign up

Export Citation Format

Share Document