Dislocation - Grain Boundary Interaction in Nickel Bicrystals Evolution of the Resulting Defects under Thermal Treatment

2000 ◽  
Vol 652 ◽  
Author(s):  
Louisette Priester ◽  
Sophie Poulat ◽  
Brigitte Décamps ◽  
Jany Thibault

ABSTRACTThe interactions between lattice dislocations and grain boundaries were studied in nickel bicrystals. Three types of grain boundaries, according to their energy, were investigated : singular σ3 {111}, vicinal near σ11 {311} and general near σ11 {332} grain boundaries. The experiments were performed by transmission electron microscopy using a set of techniques : conventional, weak beam, in situ and high resolution transmission electron microscopy. Dislocation transmission from one crystal to the other was only observed for σ3 {111} GB. It consists in a decomposition within the grain boundary of the trapped lattice dislocation followed by the emission of one partial in the neighbouring crystal. A high resolved shear stress is required to promote the emission process. Most often, the absorbed lattice dislocations or extrinsic grain boundary dislocations react with the intrinsic dislocation network giving rise to complex configurations. The evolutions with time and upon thermal treatment of these configurations were followed by in situ transmission electron microscopy. The evolution processes, which differ with the type of grain boundaries, were analyzed by comparison with the existing models for extrinsic grain boundary dislocation accommodation. They were tentatively interpretated on the basis of the grain boundary atomic structures and defects obtained by high resolution transmission electron microscopy studies.

1991 ◽  
Vol 238 ◽  
Author(s):  
Elsie C. Urdaneta ◽  
David E. Luzzi ◽  
Charles J. McMahon

ABSTRACTBismuth-induced grain boundary faceting in Cu-12 at ppm Bi polycrystals was studied using transmission electron microscopy (TEM). The population of faceted grain boundaries in samples aged at 600°C was observed to increase with heat treatment time from 15min to 24h; aging for 72h resulted in de-faceting, presumably due to loss of Bi from the specimen. The majority of completely faceted boundaries were found between grains with misorientation Σ=3. About 65% of the facets of these boundaries were found to lie parallel to crystal plane pairs of the type {111}1/{111]2- The significance of these findings in light of recent high resolution electron microscopy experiments is discussed.


1992 ◽  
Vol 295 ◽  
Author(s):  
Richard W. Fonda ◽  
David E. Luzzi

AbstractGrain boundaries in quenched and aged Cu-i.5%Sb were examined with Auger electron microscopy, transmission electron microscopy, and high resolution electron microscopy. The ∑=3 grain boundaries are strongly faceted, with the facets lying primarily along the coincident (111) planes of the two grains. The grain boundaries are enriched in antimony, as demonstrated by both AES and HREM. HREM images of the ∑=3 (111) ║ (111) grain boundary differ from those of the Cu-Bi ∑ =3 (111) ║ (111) grain boundary in the lack of a significant grain boundary expansion to accommodate the excess solute at the boundary. A preliminary investigation of the atomic structure of the ∑=3 (111) ║ (111) facet by HREM and multislice calculations is presented.


1994 ◽  
Vol 77 (2) ◽  
pp. 339-348 ◽  
Author(s):  
Thomas Hoche ◽  
Philip R. Kenway ◽  
Hans-Joachim Kleebe ◽  
Manfred Ruhle ◽  
Patricia A. Morris

1990 ◽  
Vol 183 ◽  
Author(s):  
J. L. Batstone

AbstractMotion of ordered twin/matrix interfaces in films of silicon on sapphire occurs during high temperature annealing. This process is shown to be thermally activated and is analogous to grain boundary motion. Motion of amorphous/crystalline interfaces occurs during recrystallization of CoSi2 and NiSi2 from the amorphous phase. In-situ transmission electron microscopy has revealed details of the growth kinetics and interfacial roughness.


Sign in / Sign up

Export Citation Format

Share Document