High-Resolution Transmission Electron Microscopy Studies of a Near Sigma11 Grain Boundary in alpha-Alumina

1994 ◽  
Vol 77 (2) ◽  
pp. 339-348 ◽  
Author(s):  
Thomas Hoche ◽  
Philip R. Kenway ◽  
Hans-Joachim Kleebe ◽  
Manfred Ruhle ◽  
Patricia A. Morris
2004 ◽  
Vol 810 ◽  
Author(s):  
H.B. Yao ◽  
D.Z. Chi ◽  
S. Tripathy ◽  
S.Y. Chow ◽  
W.D. Wang ◽  
...  

ABSTRACTThe germanosilicidation of Ni on strained (001) Si0.8Ge0.2, particularly Ge segregation, grain boundary grooving, and surface morphology, during rapid thermal annealing (RTA) was studied. High-resolution cross-sectional transmission electron microscopy (HRXTEM) suggested that Ge-rich Si1−zGez segregation takes place preferentially at the germanosilicide/Si1−xGex interface, more specifically at the triple junctions between two adjacent NiSi1−uGeu grains and the underlying epi Si1−xGex, and it is accompanied with thermal grooving process. The segregation process accelerates the thermal grooving of NiSi1−uGeu grain boundaries at the interface. The segregation-accelerated grain boundary grooving has significant effect on the surface morphology of NiSi1−uGeu films in Ni-SiGe system.


1991 ◽  
Vol 238 ◽  
Author(s):  
Elsie C. Urdaneta ◽  
David E. Luzzi ◽  
Charles J. McMahon

ABSTRACTBismuth-induced grain boundary faceting in Cu-12 at ppm Bi polycrystals was studied using transmission electron microscopy (TEM). The population of faceted grain boundaries in samples aged at 600°C was observed to increase with heat treatment time from 15min to 24h; aging for 72h resulted in de-faceting, presumably due to loss of Bi from the specimen. The majority of completely faceted boundaries were found between grains with misorientation Σ=3. About 65% of the facets of these boundaries were found to lie parallel to crystal plane pairs of the type {111}1/{111]2- The significance of these findings in light of recent high resolution electron microscopy experiments is discussed.


1985 ◽  
Vol 57 ◽  
Author(s):  
W. Krakow ◽  
D. A. Smith

AbstractThe atomic structure of representative tilt boundaries in gold has been determined by high resolution transmission electron microscopy. Characteristic and varying regions of decreased density and coordination have been identified and related to mechanisms of grain boundary diffusion and migration


1992 ◽  
Vol 295 ◽  
Author(s):  
V. Ravikumar ◽  
Vinayak P. Dravid

AbstractThe atomic structure of a pristine (undoped) boundary in strontium titanate has been investigated using transmission electron microscopy techniques. Results of electron diffraction studies indicate a pure tilt boundary with a common \001] tilt axis, and a tilt angle of 36.8°, which corresponds to a Σ-= 5 grain boundary in the Coincidence Site Lattice (CSL) notation. High Resolution Transmission Electron Microscopy (HRTEM) indicates a symmetric tilt grain boundary with a (130) type grain boundary plane. No cation non-stoichiometry or impurity segregants could be detected at the interface, within the limits of the Energy Dispersive X-ray microanalysis technique used. The grain boundary has a compact core, with negligible planenormal rigid body translation (RBT). An in-plane RBT of (1/2)d130 (˜ 0.62 A°) was identified from the high resolution electron micrographs. An empirical model of the relaxed atomic structure of the grain boundary is proposed.


1996 ◽  
Vol 466 ◽  
Author(s):  
D. L. Medlin ◽  
S. M. Foiles ◽  
C. B. Carter

ABSTRACTHigh-resolution transmission electron microscopy (HRTEM) observations are presented of a/3[111] grain-boundary dislocations in an aluminum Σ=3[011] bicrystal. These dislocations are present on both (111) (coherent twin) and (211) (incoherent twin) facets of the bicrystal boundary. The dislocations on the coherent twin facet migrate by a climb process that increases the thickness of the twinned material. These dislocations originate on a Σ=3 (211) incoherent twin boundary where they are closely spaced and dissociated in a wide core configuration. Atomistic calculations of the defect structure and interaction of multiple a/3[111] grain boundary dislocations are discussed.


1992 ◽  
Vol 295 ◽  
Author(s):  
Richard W. Fonda ◽  
David E. Luzzi

AbstractGrain boundaries in quenched and aged Cu-i.5%Sb were examined with Auger electron microscopy, transmission electron microscopy, and high resolution electron microscopy. The ∑=3 grain boundaries are strongly faceted, with the facets lying primarily along the coincident (111) planes of the two grains. The grain boundaries are enriched in antimony, as demonstrated by both AES and HREM. HREM images of the ∑=3 (111) ║ (111) grain boundary differ from those of the Cu-Bi ∑ =3 (111) ║ (111) grain boundary in the lack of a significant grain boundary expansion to accommodate the excess solute at the boundary. A preliminary investigation of the atomic structure of the ∑=3 (111) ║ (111) facet by HREM and multislice calculations is presented.


2000 ◽  
Vol 652 ◽  
Author(s):  
Louisette Priester ◽  
Sophie Poulat ◽  
Brigitte Décamps ◽  
Jany Thibault

ABSTRACTThe interactions between lattice dislocations and grain boundaries were studied in nickel bicrystals. Three types of grain boundaries, according to their energy, were investigated : singular σ3 {111}, vicinal near σ11 {311} and general near σ11 {332} grain boundaries. The experiments were performed by transmission electron microscopy using a set of techniques : conventional, weak beam, in situ and high resolution transmission electron microscopy. Dislocation transmission from one crystal to the other was only observed for σ3 {111} GB. It consists in a decomposition within the grain boundary of the trapped lattice dislocation followed by the emission of one partial in the neighbouring crystal. A high resolved shear stress is required to promote the emission process. Most often, the absorbed lattice dislocations or extrinsic grain boundary dislocations react with the intrinsic dislocation network giving rise to complex configurations. The evolutions with time and upon thermal treatment of these configurations were followed by in situ transmission electron microscopy. The evolution processes, which differ with the type of grain boundaries, were analyzed by comparison with the existing models for extrinsic grain boundary dislocation accommodation. They were tentatively interpretated on the basis of the grain boundary atomic structures and defects obtained by high resolution transmission electron microscopy studies.


Sign in / Sign up

Export Citation Format

Share Document