boundary interaction
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 22)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Elias J. Hunter ◽  
Heidi L. Fuchs ◽  
John L. Wilkin ◽  
Gregory P. Gerbi ◽  
Robert J. Chant ◽  
...  

Abstract. Offline particle tracking (OPT) is a widely used tool for the analysis of data in oceanographic research. Given the output of a hydrodynamic model, OPT can provide answers to a wide variety of research questions involving fluid kinematics, zooplankton transport, the dispersion of pollutants, and the fate of chemical tracers, among others. In this paper, we introduce ROMSPath, an OPT model designed to complement the Regional Ocean Modelling System (ROMS). Based on the Lagrangian TRANSport (LTRANS) model (North et al., 2008), ROMSPath is written in Fortran 90 and provides advancements in functionality and efficiency compared to LTRANS. First, ROMSPath now calculates particle trajectories using the ROMS native grid, which provides advantages in interpolation, masking, and boundary interaction, while improving accuracy. Second, ROMSPath enables simulated particles to pass between nested ROMS grids, which are an increasingly popular tool to simulate the ocean over multiple scales. Third, the ROMSPath vertical turbulence module enables the turbulent (diffusion) time step and advection time step to be specified separately, adding flexibility and improving computational efficiency. Lastly, ROMSPath includes new infrastructure enabling input of auxiliary parameters for added functionality. In particular, Stokes drift can be input and added to particle advection. Here we describe the details of these updates and improvements.


2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Lorenzo Di Pietro ◽  
Edoardo Lauria ◽  
Pierluigi Niro

We consider a 4d scalar field coupled to large NN free or critical O(N)O(N) vector models, either bosonic or fermionic, on a 3d boundary. We compute the \betaβ function of the classically marginal bulk/boundary interaction at the first non-trivial order in the large NN expansion and exactly in the coupling. Starting with the free (critical) vector model at weak coupling, we find a fixed point at infinite coupling in which the boundary theory is the critical (free) vector model and the bulk decouples. We show that a strong/weak duality relates one description of the renormalization group flow to another one in which the free and the critical vector models are exchanged. We then consider the theory with an additional Maxwell field in the bulk, which also gives decoupling limits with gauged vector models on the boundary.


Author(s):  
Sheng Qin ◽  
Shuyue Wang ◽  
Gang Sun ◽  
Yongjian Zhong ◽  
Bochao Cao

Shock loss is the primary source of total pressure loss of transonic axial compressors. Reducing the shock by redesigning the geometry of rotor is of great interest for turbomachinery designers. However, the complex flow field involving shock waves, shock-boundary interaction, intense secondary flows, etc., in the compressor makes the design of rotor difficult. The conventional method of design and optimization is computationally intensive and time-costly. This study introduces an inverse design method to design rotor blades corresponding to prescribed isentropic Mach number distributions with no modification of flow-governing equations. An artificial neural network is trained to predict the isentropic Mach number distributions of any deformed blades. Then, with the pattern search optimization, the blade corresponding to the prescribed isentropic Mach number distributions can be achieved. When the aerodynamic parameter database is calculated and the neural network is obtained, this method can design large numbers of blades of changed isentropic Mach number distributions immediately, without modifying the computational fluid dynamics (CFD) flow solver. The design process is fully automatic and efficient. In this study, NASA Rotor 37 is redesigned and optimized as test cases. Some analysis on the influence of blade shape on aerodynamic characteristics of the rotor is represented in this study.


2021 ◽  
Vol 51 (4) ◽  
pp. 1265-1282
Author(s):  
Zhibin Yang ◽  
Xiaoming Zhai ◽  
David P. Marshall ◽  
Guihua Wang

AbstractRecent studies show that the western boundary acts as a “graveyard” for westward-propagating ocean eddies. However, how the eddy energy incident on the western boundary is dissipated remains unclear. Here we investigate the energetics of eddy–western boundary interaction using an idealized MIT ocean circulation model with a spatially variable grid resolution. Four types of model experiments are conducted: 1) single eddy cases, 2) a sea of random eddies, 3) with a smooth topography, and 4) with a rough topography. We find significant dissipation of incident eddy energy at the western boundary, regardless of whether the model topography at the western boundary is smooth or rough. However, in the presence of rough topography, not only the eddy energy dissipation rate is enhanced, but more importantly, the leading process for removing eddy energy in the model switches from bottom frictional drag as in the case of smooth topography to viscous dissipation in the ocean interior above the rough topography. Further analysis shows that the enhanced eddy energy dissipation in the experiment with rough topography is associated with greater anticyclonic, ageostrophic instability (AAI), possibly as a result of lee wave generation and nonpropagating form drag effect.


Author(s):  
Johann Kappacher ◽  
Oliver Renk ◽  
Daniel Kiener ◽  
Helmut Clemens ◽  
Verena Maier-Kiener

Abstract Due to their outstanding properties, ultra-fine-grained tungsten and its alloys are promising candidates to be used in harsh environments, hence it is crucial to understand their high temperature behavior and underlying deformation mechanisms. Therefore, advanced nanoindentation techniques were applied to ultra-fine-grained tungsten–rhenium alloys up to 1073 K. A continuous hardness decrease up to 0.2 $$T_{\text{m}}$$ T m is rationalized by a still dominating effect of the Peierls stress. However, the absence of well-established effects of Rhenium alloying, resulting in a reduced temperature dependence of strength for coarse-grained microstructures, was interpreted as an indication for a diminishing role of kink-pair formation in ultra-fine-grained metals with sufficiently fine grain size. Despite slight grain growth in W, dislocation–grain boundary interaction was identified as the dominating deformation mechanism above 0.2 $$T_{\text{m}}$$ T m . Interaction and accommodation of lattice dislocations with grain boundaries was affected by a reduced boundary diffusivity through alloying with Re. Graphic abstract


2021 ◽  
Vol 800 ◽  
pp. 140327
Author(s):  
Andrey I. Dmitriev ◽  
Anton Yu Nikonov ◽  
Artur R. Shugurov ◽  
Alexey V. Panin

Sign in / Sign up

Export Citation Format

Share Document