A ‘Building Block’ Approach To Mixed-Colloid Systems Through Electrostatic Self-Organization

2001 ◽  
Vol 676 ◽  
Author(s):  
Trent H. Galow ◽  
Andrew K. Boal ◽  
Vincent M. Rotello

ABSTRACTWe have developed a highly modular electrostatically-mediated approach to colloid-colloid and polymer-colloid networks using ‘building block’ and ‘bricks and mortar’ self-assembly methodologies, respectively. The former approach involved functionalization of one type of nanoparticle building block with a primary amine and a counterpart building block with a carboxylic acid derivative. After combining these two systems, acid-base chemistry followed by immediate charge-pairing resulted in the spontaneous formation of electrostatically-bound mixed-nanoparticle constructs. The shape and size of these ensembles were controlled via variation of particle size and stoichiometries. In the ‘bricks and mortar’ approach, a functionalized polymer is combined with complementary nanoparticles to provide mixed polymer-nanoparticle networked structures. A notable feature is the inherent porosity resulting from the electrostatic assembly. The shape and size of these ensembles were controlled via variation of particle size, stoichiometries and the order in which they were added.

2001 ◽  
Vol 635 ◽  
Author(s):  
Trent H. Galow ◽  
Andrew K. Boal ◽  
Vincent M. Rotello

AbstractWe have developed a ‘building block’ approach to electrostatically-mediated construction of modular self-assembled colloid-colloid ensembles. Our strategy involves functionalization of one type of colloidal building block with a primary amine, and a counterpart building block with a carboxylic acid derivative (Scheme 1). By combining the two systems, acid-base chemistry followed by immediate charge-pairing resulted in the spontaneous formation of electrostatically-bound mixed-colloid constructs. The shape and size of these ensembles was controlled via variation of particle size for the two components and their stoichiometries.


2010 ◽  
Vol 75 (4) ◽  
pp. 459-473 ◽  
Author(s):  
Pu Zhao ◽  
Xian Wang ◽  
Fang Jian ◽  
Jun Zhang ◽  
Lian Xiao

p-Hydroxybenzoic acid (p-HOBA) was selected as the building block for self-assembly with five bases, i.e., diethylamine, tert-butyl amine, cyclohexylamine, imidazole and piperazine, and generate the corresponding acid-base complexes 1-5. Crystal structure analyses suggest that proton-transfer from the carboxyl hydrogen to the nitrogen atom of the bases can be observed in 1-4; while only in 5 does a solvent water molecule co-exists with p-HOBA and piperazine. With the presence of O-H?O hydrogen bonds in 1-4, the deprotonated p-hydroxybenzoate anions (p-HOBAA-) are simply connected each other in a head-to-tail motif to form one-dimensional (1D) arrays, which are further extended to distinct two-dimensional (2D) (for 1 and 4) and three-dimensional (3D) (for 2 and 3 ) networks via N-H?O interactions. While in 5, neutral acid and base are combined pair wise by O-H?N and N-H?O bonds to form a 1D tape and then the 1D tapes are sequentially combined by water molecules to create a 3D network. Some interlayer or intralayer C-H?O, C-H?? and ??? interactions help to stabilize the supramolecular buildings. Melting point determination analyses indicate that the five acidbase complexes are not the ordinary superposition of the reactants and they are more stable than the original reactants.


RSC Advances ◽  
2020 ◽  
Vol 10 (13) ◽  
pp. 7987-7993
Author(s):  
H. Hamoudi ◽  
G. R. Berdiyorov ◽  
K. Ariga ◽  
V. Esaulov

Self-assembly based building block approach for creating layered carbon–metal composite materials.


2021 ◽  
Vol 13 (15) ◽  
pp. 8122
Author(s):  
Shijie Tian ◽  
Weiqiang Tan ◽  
Xinyuan Wang ◽  
Tingting Li ◽  
Fanhao Song ◽  
...  

Surface activity of humic acid (HA) and its six sub-fractions isolated from forest soil were characterized by surface tension measurements, dynamic light scattering, and laser doppler electrophoresis. The surface tension of HA and its sub-fractions reduced from 72.4 mN·m−1 to 36.8 mN·m−1 in exponential model with the increasing concentration from 0 to 2000 mg·L−1. The critical micelle concentration (CMC) and Z-average particle size ranged from 216–1024 mg·L−1 and 108.2–186.9 nm for HA and its sub-fractions, respectively. The CMC have related with alkyl C, O-alkyl C, aromatic C, and carbonyl C (p < 0.05), respectively, and could be predicted with the multiple linear regression equation of CMC, CMC = 18896 − 6.9 × C-296 × alkyl C-331 × aromatic C-17019 × H/C + 4054 × HB/HI (p < 0.05). The maximum particle size was 5000 nm after filtered by a membrane with pore size of 450 nm, indicating HA and its sub-fractions could progressed self-assembly at pH 6.86. The aggregate sizes of number-base particle size distributions were mainly in six clusters including 2 ± 1 nm, 5 ± 2 nm, 10 ± 3 nm, 21 ± 8 nm, 40 ± 10 nm, and >50 nm analyzed by Gaussian model that maybe due to the inconsistency of the components and structures of the HA sub-fractions, requiring further study. It is significance to explore the surface activity of HA and its sub-fractions, which is helpful to clarify the environmental behavior of HA.


2004 ◽  
Vol 338 (3) ◽  
pp. 611-629 ◽  
Author(s):  
Ashish V. Tendulkar ◽  
Anand A. Joshi ◽  
Milind A. Sohoni ◽  
Pramod P. Wangikar

2014 ◽  
Vol 12 (40) ◽  
pp. 7932-7936 ◽  
Author(s):  
Benjamin M. Schulze ◽  
Davita L. Watkins ◽  
Jing Zhang ◽  
Ion Ghiviriga ◽  
Ronald K. Castellano

Reported is characterization of the self-assembly of π-conjugated oligomers, molecules studied recently in photovoltaic devices, using variable temperature diffusion ordered spectroscopy; the approach has allowed estimation of assembly size, shape, and molecularity.


2017 ◽  
Vol 53 (64) ◽  
pp. 9024-9027 ◽  
Author(s):  
Shuang Fu ◽  
Guo An ◽  
Hongcheng Sun ◽  
Quan Luo ◽  
Chunxi Hou ◽  
...  

Polymer nanocapsules and 2D-polymer films were successfully constructed by using a novel laterally functionalized pillararene derivative.


2018 ◽  
Vol 140 (50) ◽  
pp. 17365-17368 ◽  
Author(s):  
Yuteng Zhang ◽  
Hongmei Gan ◽  
Chao Qin ◽  
Xinlong Wang ◽  
Zhongmin Su ◽  
...  
Keyword(s):  

2013 ◽  
Vol 4 ◽  
pp. 20-31 ◽  
Author(s):  
James L Gole ◽  
William Laminack

Nanostructure-decorated n-type semiconductor interfaces are studied in order to develop chemical sensing with nanostructured materials. We couple the tenets of acid/base chemistry with the majority charge carriers of an extrinsic semiconductor. Nanostructured islands are deposited in a process that does not require self-assembly in order to direct a dominant electron-transduction process that forms the basis for reversible chemical sensing in the absence of chemical-bond formation. Gaseous analyte interactions on a metal-oxide-decorated n-type porous silicon interface show a dynamic electron transduction to and from the interface depending upon the relative strength of the gas and metal oxides. The dynamic interaction of NO with TiO2, SnO2, NiO, Cu x O, and Au x O (x >> 1), in order of decreasing acidity, demonstrates this effect. Interactions with the metal-oxide-decorated interface can be modified by the in situ nitridation of the oxide nanoparticles, enhancing the basicity of the decorated interface. This process changes the interaction of the interface with the analyte. The observed change to the more basic oxinitrides does not represent a simple increase in surface basicity but appears to involve a change in molecular electronic structure, which is well explained by using the recently developed IHSAB model. The optical pumping of a TiO2 and TiO2− x N x decorated interface demonstrates a significant enhancement in the ability to sense NH3 and NO2. Comparisons to traditional metal-oxide sensors are also discussed.


Sign in / Sign up

Export Citation Format

Share Document