Thickness Dependence of Transport Properties of Epitaxial SrRuO3 Thin Films Grown on SrTiO3 Substrates

2001 ◽  
Vol 690 ◽  
Author(s):  
G. Herranz ◽  
F. Sánchez ◽  
M.V. García-Cuenca ◽  
C. Ferrater ◽  
M. Varela ◽  
...  

ABSTRACTTo study the effect of the film/substrate interface in thin films we have analyzed the thickness dependence of the transport properties of SrRuO3 films grown on SrTiO3 substrates. Our data makes evident the failure of the so-called deadlayer model to describe the observed thickness dependence of the conductivity. This is interpreted as due to a non-monotonous change of microstructure as thickness increases. Indeed, Atomic Force Microscopy studies indicate substantial modifications of the growth mechanism with thickness.

2006 ◽  
Vol 21 (3) ◽  
pp. 547-551 ◽  
Author(s):  
Rosalía Poyato ◽  
Bryan D. Huey ◽  
Nitin P. Padture

Piezoresponse atomic-force microscopy (PFM) has been used to characterize the local piezoelectric properties of a novel, nanotube-patterned (“honeycomb”) thin film of BaTiO3 on Ti substrate synthesized hydrothermally at 200 °C. PFM amplitude and phase images, prior to the application of any direct current (dc) field, show ring-shaped piezoelectric regions that correspond to the nanostructure of this film. These results show clearly that the as-synthesized nanotube-patterned BaTiO3 thin film is piezoelectric, with a net spontaneous polarization perpendicular to the film–substrate interface. In addition, polarization switching and hysteresis were observed as a function of applied dc field, confirming that this novel fabrication procedure results in unique configurations of BaTiO3 film that are also ferroelectric.


Soft Matter ◽  
2017 ◽  
Vol 13 (33) ◽  
pp. 5597-5603 ◽  
Author(s):  
Daniel E. Martínez-Tong ◽  
Luis A. Miccio ◽  
Angel Alegria

We present a detailed Atomic Force Microscopy based study on the ionic transport properties of polyethylene oxide (PEO) thin films prepared under different conditions.


1999 ◽  
Vol 353 (1-2) ◽  
pp. 194-200 ◽  
Author(s):  
C. Coupeau ◽  
J.F. Naud ◽  
F. Cleymand ◽  
P. Goudeau ◽  
J. Grilhé

1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


Sign in / Sign up

Export Citation Format

Share Document