Residual Ion Implantation Damage at Source/Drain Junctions of Excimer Laser Annealed Polycrystalline Silicon Thin Film Transistor

2002 ◽  
Vol 715 ◽  
Author(s):  
Kee-Chan Park ◽  
Jae-Shin Kim ◽  
Woo-Jin Nam ◽  
Min-Koo Han

AbstractResidual ion implantation damage at source/drain junctions of excimer laser annealed polycrystalline silicon (poly-Si) thin film transistor (TFT) was investigated by high-resolution transmission electron microscopy (HR-TEM). Cross-sectional TEM observation showed that XeCl excimer laser (λ=308 nm) energy decreased considerably at the source/drain junctions of top-gated poly-Si TFT due to laser beam diffraction at the gate electrode edges and that the silicon layer amorphized by ion implantation, was not completely annealed at the juncions. The HR-TEM observation showed severe lattice disorder at the junctions of poly-Si TFT.

2000 ◽  
Vol 76 (17) ◽  
pp. 2442-2444 ◽  
Author(s):  
C. T. Angelis ◽  
C. A. Dimitriadis ◽  
F. V. Farmakis ◽  
J. Brini ◽  
G. Kamarinos ◽  
...  

2009 ◽  
Vol 30 (1) ◽  
pp. 36-38 ◽  
Author(s):  
J. H. Oh ◽  
D. H. Kang ◽  
W. H. Park ◽  
J. Jang ◽  
Y. J. Chang ◽  
...  

2003 ◽  
Vol 42 (Part 1, No. 3) ◽  
pp. 1164-1167 ◽  
Author(s):  
Du-Zen Peng ◽  
Ting-Chang Chang ◽  
Chin-Fu Liu ◽  
Ping-Hung Yeh ◽  
Po-Tsun Liu ◽  
...  

2002 ◽  
Vol 81 (25) ◽  
pp. 4763-4765 ◽  
Author(s):  
Du Zen Peng ◽  
Ting-Chang Chang ◽  
Po-Sheng Shih ◽  
Hsiao-Wen Zan ◽  
Tiao-Yuan Huang ◽  
...  

2007 ◽  
Vol 124-126 ◽  
pp. 259-262
Author(s):  
Jae Hong Jeon ◽  
Kang Woong Lee

We investigated the effect of amorphous silicon pattern design regarding to light induced leakage current in amorphous silicon thin film transistor. In addition to conventional design, where amorphous silicon layer is protruding outside the gate electrode, we designed and fabricated amorphous silicon thin film transistors in another two types of bottom gated structure. The one is that the amorphous silicon layer is located completely inside the gate electrode and the other is that the amorphous silicon layer is protruding outside the gate electrode but covered completely by the source and drain electrode. Measurement of the light induced leakage current caused by backlight revealed that the design where the amorphous silicon is located inside the gate electrode was the most effective however the last design was also effective in reducing the leakage current about one order lower than that of the conventional design.


Sign in / Sign up

Export Citation Format

Share Document