III-Nitride Growth on Lithium Niobate: A New Substrate Material for Polarity Engineering in III-Nitride Heteroepitaxy

2002 ◽  
Vol 743 ◽  
Author(s):  
W. Alan Doolittle ◽  
Gon Namkoong ◽  
Alexander Carver ◽  
Walter Henderson ◽  
Dieter Jundt ◽  
...  

ABSTRACTHerein, we discuss the use of a novel new substrate for III-Nitride epitaxy, Lithium Niobate. It is shown that Lithium Niobate (LN) has a smaller lattice mismatch to III-Nitrides than sapphire and can be used to control the polarity of III-Nitride films grown by plasma assisted molecular beam epitaxy. Results from initial growth studies are reported including using various nitridation/buffer conditions along with structural and optical characterization. Comparisons of data obtained from GaN and AlN buffer layers are offered and details of the film adhesion dependence on buffer layer conditions is presented. Lateral polarization heterostructures grown on periodically poled LN are also demonstrated. While work is still required to establish the limits of the methods proposed herein, these initial studies offer the promise for mixing III-Nitride semiconductor materials with lithium niobate allowing wide bandgap semiconductors to utilize the acoustic, pyroelectric/ferroelectric, electro-optic, and nonlinear optical properties of this new substrate material as well as the ability to engineer various polarization structures for future devices.

1996 ◽  
Vol 449 ◽  
Author(s):  
M. Yeadon ◽  
W. Kim ◽  
A. E. Botchkarev ◽  
S. N. Mohammad ◽  
H. Morkoc ◽  
...  

ABSTRACTIll-nitride semiconductors are emerging as highly promising candidates for the fabrication of wide band-gap electronic and opto-electronic devices. Sapphire ((α-A12O3) is currently one of the primary substrates of choice for the growth of GaN despite a large lattice mismatch. Significant improvements in the quality of III-nitride layers have been demonstrated by exposure of the substrate to reactive nitrogen species followed by deposition of a low temperature AIN or GaN buffer layer. In this paper we present a study of the evolution of the surface topography and defect microstructure of nitrided α-A12O3 substrates and AIN buffer layers deposited by reactive molecular beam epitaxy (RMBE). Their influence on the morphology and properties of GaN layers is also discussed. Both nitridation time and AIN deposit thickness were varied systematically, at different temperatures and buffer growth rates. The microstructures were characterized using the atomic force microscope (AFM) and transmission electron microscope (TEM). Initial growth studies are ideally suited to in-situ experiments, and further investigations are also in progress using a unique UHV TEM with the facility for in-situ RMBE.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 242
Author(s):  
An-Chung Chiang ◽  
Yuan-Yao Lin ◽  
Shou-Tai Lin ◽  
Yen-Yin Lin

Electro-optic (EO) Bragg deflectors have been extensively used in a variety of applications. Recent developments show that bandwidths and deflection efficiencies, as well as angular bandwidths, would significantly limit the utilization of EO Bragg deflectors, especially for applications which need strong focusing, such as intra-cavity applications. In this paper, we introduce a broadband EO Bragg deflector based on periodically-poled lithium niobate with a monolithic dual-grating design. We analyzed the deflection properties of this device by using a modified coupled wave theory and showed that this device can be still efficient for a small beam radius under strong focusing, whereas a single-grating one becomes very inefficient. Using a 1064-nm laser beam with a 100-μm beam radius, we obtained a 74% deflection efficiency with a 190-V bias voltage with a 0.5-mm-thick and 7.5-mm-long dual-grating sample. The acceptance angle for the Bragg condition of this device is as large as a few tens of mrad. The potential bandwidth of this device exceeds 500 nm if the proper operation region is chosen.


2013 ◽  
Vol 294 ◽  
pp. 202-207 ◽  
Author(s):  
Hongyun Chen ◽  
Tao Lv ◽  
Anshou Zheng ◽  
Yanling Han

2012 ◽  
Vol 49 (10) ◽  
pp. 101901
Author(s):  
孔艳 Kong Yan ◽  
张秀梅 Zhang Xiumei ◽  
苏宙平 Su Zhouping ◽  
高淑梅 Gao Shumei

2009 ◽  
Vol 282 (6) ◽  
pp. 1207-1211 ◽  
Author(s):  
Kun Liu ◽  
Jianhong Shi ◽  
Zhuoer Zhou ◽  
Xianfeng Chen

2010 ◽  
Vol 18 (5) ◽  
pp. 5061 ◽  
Author(s):  
Xiao-qi Zeng ◽  
Li-xiang Chen ◽  
Hai-bo Tang ◽  
Bing-zhi Zhang ◽  
Dong-zhou Zhong ◽  
...  

1997 ◽  
Vol 468 ◽  
Author(s):  
Y.-M. Le Vaillant ◽  
S. Ciur ◽  
A. Andenet ◽  
O. Briot ◽  
B. Gil ◽  
...  

ABSTRACTThe problem of residual strain in GaN epilayers is currently the attention of many studies, since it affects the optical and electrical properties of the epilayers. In order to discuss the origin of this residual strain, we have grown a series of GaN epilayers onto AlN buffer layers, sapphire (0001) being used as substrate. The buffer layer is usually deposited in an amorphous state and is recrystallized by a thermal annealing. Here we have made a systematic study of the buffer recrystallization by changing the annealing temperature and the annealing time. The surface morphology is probed using Atomic Force Microscopy (AFM). The lattice parameter c is carried out from accurate x-ray diffraction measurements. The GaN layers were studied by low temperature photoluminescence and reflectivity. The amount of residual strain is calibrated from the position of the A exciton and the optical quality of the layers is assessed from the photoluminescence linewidths. The longer the annealing time the better the strain relaxation in AlN buffer layers and the higher the lattice mismatch with GaN overlayers.


Sign in / Sign up

Export Citation Format

Share Document