Gas Cluster Ion Beam Processing of GaSb and InSb Surfaces

2003 ◽  
Vol 792 ◽  
Author(s):  
K. Krishnaswami ◽  
S.R. Vangala ◽  
B. Krejca ◽  
L.P. Allen ◽  
C. Santeufemio ◽  
...  

ABSTRACTGas Cluster Ion Beam (GCIB) processing has recently emerged as a novel surface smoothing technique to improve the finish of chemical-mechanical polished (CMP) GaSb (100) and InSb (111) wafers. This technique is capable of improving the smoothness CMP surfaces and simultaneously producing a thin desorbable oxide layer for molecular beam epitaxial growth. By implementing recipes with specific gas mixtures, cluster energy sequences, and doses, an engineered oxide can be produced. Using GaSb wafers with a high quality CMP finish, we have demonstrated surface smoothing of GaSb by reducing the average roughness from 2.8Å to 1.7Å using a dual energy CF4/O2-GCIB process with a total charge fluence of 4×1015ions/cm2. For the first time, a GCIB grown oxide layer that is comprised of mostly gallium oxides which desorbed at 530°C in our molecular beam epitaxy system is reported, after which GaSb/AlGaSb epilayers have been successfully grown. Using InSb, we successfully demonstrated substrate smoothing by reducing the average roughness from 2.5Å to 1.6Å using a triple energy O2-GCIB process with a charge fluence 9×1015ions/cm2. In order to further demonstrate the ability of GCIB to smooth InSb surfaces, sharp ∼900nm high tips have been formed on a poorly mechanically polished InSb (111)A wafer and subsequently reduced to a height of ∼100nm, an improvement by a factor of eight, using a triple energy SF6/O2-GCIB process with a total charge fluence of 6×1016ions/cm3.

2008 ◽  
Vol 310 (7-9) ◽  
pp. 1619-1626 ◽  
Author(s):  
Kannan Krishnaswami ◽  
Shivashankar R. Vangala ◽  
Helen M. Dauplaise ◽  
Lisa P. Allen ◽  
Gordon Dallas ◽  
...  

2004 ◽  
Vol 829 ◽  
Author(s):  
K. Krishnaswami ◽  
D. B. Fenner ◽  
S. R. Vangala ◽  
C. Santeufemio ◽  
M. Grzesik ◽  
...  

ABSTRACTHigh-quality GaSb substrates with minimal surface roughness and thin, uniform oxide layers are critical for developing low-power, epitaxy-based, electronic and optoelectronic devices. Ion-beam processing techniques of gas-cluster ion beam (GCIB) and bromine ion-beam assisted etching (Br-IBAE) were investigated as to their potential for improving the suitability of substrate surfaces for molecular beam epitaxial (MBE) growth. Statistical analysis of the residual surface roughness provides insight into ion-beam processing and its impact on epitaxial growth. Images of episurfaces grown on chemical mechanical polished (CMP), Br-IBAE, and GCIB finished substrates were obtained using atomic force microscopy (AFM) and these were statistically analyzed to characterize their surface roughness properties. Autocorrelation analysis of the first two types of episurfaces showed a quick loss of correlation within ∼100 nm. The episurface with Br-IBAE also showed isotropic mound roughness with sharp point-like protrusions. The GCIB prepared episurfaces exhibited the formation of uniform step-terrace patterns with monatomic steps and wide terraces as indicated by the strong, long range (>0.5 μm) correlations. Statistical analysis of the GCIB episurfaces showed self-similar random fractal behavior over eight orders of magnitude in the power spectral density (PSD) with a fractal dimension of ∼2.5.


2004 ◽  
Vol 1 (10) ◽  
pp. 2478-2482 ◽  
Author(s):  
H. Saito ◽  
M. Taguchi ◽  
M. Ohishi ◽  
M. Yoneta ◽  
K. Imai

2002 ◽  
Vol 749 ◽  
Author(s):  
Noriaki Toyoda ◽  
Isao Yamada

ABSTRACTTa2O5 films were deposited on a rough surface (average roughness 1.3nm, peak-to-valley 14nm) and surface roughness evolutions and improvements by O2 gas cluster ion beam (O2-GCIB) assisted deposition was studied. The average roughness dramatically decreased from 1.3nm to 0.5nm after deposition of Ta2O5 films 20nm in thickness with 7 keV of O2 cluster ion beams. As there was no etching or sputtering of Ta2O5 film by 7keV O2-GCIB irradiations, O2-GCIB assist deposition realized significant improvement of surface roughness by additional deposition of Ta2O5 film whose thickness was close to the peak-to-valley of original surface. It is expected that morphological evolution of the film by GCIB assist deposition becomes completely different from conventional ion assist deposition due to energetic cluster ion impacts.


1999 ◽  
Author(s):  
A. Nishiyama ◽  
M. Adachi ◽  
N. Toyoda ◽  
N. Hagiwara ◽  
J. Matsuo ◽  
...  

1999 ◽  
Vol 597 ◽  
Author(s):  
N. Toyoda ◽  
K. K. Lee ◽  
H-C. Luan ◽  
D. R. Lim ◽  
A. M. Agarwal ◽  
...  

AbstractPolycrystalline Si (poly-Si) waveguides offer design flexibility and multilayered structures in Si-integrated photonic devices. However, as-deposited poly-Si surfaces are rough compared with single-crystalline Si, and a rough surface causes significant waveguide scattering loss at the surface. In this study, surface smoothing of poly-Si waveguides with a gas-cluster ion beam (GCIB) was demonstrated as a new smoothing technique. As the GCIB process is a directional ion-beam process, in principle it can be applied not only to plane surfaces but also to three-dimensional or non-flat structures, such as waveguide ridges.The initial average roughness of as-deposited poly-Si films (625°C, 1 μm thick) ranged from 15 nm to 22 nm, and the grain sizes were distributed from 0.2 to 0.4μm. This rough surface was dramatically smoothed to a roughness of 1.5 nm by Ar cluster ion irradiation. From the relation between the sputtered depth and the surface roughness, the sputtered depth must be greater than the height difference of the roughness (peak-to-valley) to obtain smooth surfaces. Optical transmission losses at λ =1.54 μm were measured using cutback measurement from samples before and after the smoothing by GCIB. After surface smoothing with GCIB, the optical loss decreased from 85 dB/cm to 54 dB/cm.


Sign in / Sign up

Export Citation Format

Share Document