The Effect of Fluorine Implantation on Boron Diffusion in Metastable Si0.86 Ge0.14

2004 ◽  
Vol 810 ◽  
Author(s):  
Huda A. W. A. El Mubarek ◽  
Yun Wang ◽  
Janet M. Bonar ◽  
Peter Hemment ◽  
Peter Ashburn

ABSTRACTThis paper investigates the effect of varying F+ implantation energy on boron thermal diffusion and boron transient enhanced diffusion (TED) in metastable Si0.86Ge0.14 by characterising the diffusion of a boron marker layer in samples with and without P+ and F+ implants. The effect of two F+ implantation energies (185keV and 42keV) was studied at two anneal temperatures 950°C and 1025°C. In samples implanted with P+ & 185keV F+, the fluorine suppresses boron transient enhanced diffusion completely at 950°C and suppresses thermal diffusion by 25% at 1025°C. In samples implanted with P+ & 42keV F+, the fluorine does not reduce boron transient enhanced diffusion at 950°C. This result is explained by the location of the boron marker layer in the vacancy-rich region of the fluorine damage profile for the 185keV implant but in the interstitial-rich region for the 42keV implant. Isolated dislocation loops are seen in the SiGe layer for the 185keV implant. We postulate that these loops are due to the partial relaxation of the metastable Si0.86Ge0.14 layer.

1996 ◽  
Vol 438 ◽  
Author(s):  
A. Claverie ◽  
C. Bonafos ◽  
M. Omri ◽  
B. De Mauduit ◽  
G. Ben Assayag ◽  
...  

AbstractTransient Enhanced Diffusion (TED) of dopants in Si is the consequence of the evolution, upon annealing, of a large supersaturation of Si self-interstitial atoms left after ion bombardment. In the case of amorphizing implants, this supersaturation is located just beneath the c/a interface and evolves through the nucleation and growth of End-Of-Range (EOR) defects.For this reason, we discuss here the relation between TED and EOR defects. Modelling of the behavior of these defects upon annealing allows one to understand why and how they affect dopant diffusion. This is possible through the development of the Ostwald ripening theory applied to extrinsic dislocation loops. This theory is shown to be readily able to quantitatively describe the evolution of the defect population (density, size) upon annealing and gives access to the variations of the mean supersaturation of Si self-interstitial atoms between the loops and responsible for TED. This initial supersaturation is, before annealing, at least 5 decades larger than the equilibrium value and exponentially decays with time upon annealing with activation energies that are the same than the ones observed for TED. It is shown that this time decay is precisely at the origin of the transient enhancement of boron diffusivity through the interstitial component of boron diffusion. Side experiments shed light on the effect of the proximity of a free surface on the thermal behavior of EOR defects and allow us to quantitatively describe the space and time evolutions of boron diffusivity upon annealing of preamorphised Si layers.


1996 ◽  
Vol 439 ◽  
Author(s):  
A. Claverie ◽  
C. Bonafos ◽  
M. Omri ◽  
B. De Mauduit ◽  
G. Ben Assayag ◽  
...  

AbstractTransient Enhanced Diffusion (TED) of dopants in Si is the consequence of the evolution, upon annealing, of a large supersaturation of Si self-interstitial atoms left after ion bombardment. In the case of amorphizing implants, this supersaturation is located just beneath the c/a interface and evolves through the nucleation and growth of End-Of-Range (EOR) defects.For this reason, we discuss here the relation between TED and EOR defects. Modelling of the behavior of these defects upon annealing allows one to understand why and how they affect dopant diffusion. This is possible through the development of the Ostwald ripening theory applied to extrinsic dislocation loops. This theory is shown to be readily able to quantitatively describe the evolution of the defect population (density, size) upon annealing and gives access to the variations of the mean supersaturation of Si self-interstitial atoms between the loops and responsible for TED. This initial supersaturation is, before annealing, at least 5 decades larger than the equilibrium value and exponentially decays with time upon annealing with activation energies that are the same than the ones observed for TED. It is shown that this time decay is precisely at the origin of the transient enhancement of boron diffusivity through the interstitial component of boron diffusion. Side experiments shed light on the effect of the proximity of a free surface on the thermal behavior of EOR defects and allow us to quantitatively describe the space and time evolutions of boron diffusivity upon annealing of preamorphised Si layers.


1997 ◽  
Vol 469 ◽  
Author(s):  
V. C. Venezia ◽  
T. E. Haynes ◽  
A. Agarwal ◽  
H. -J. Gossmann ◽  
D. J. Eaglesham

ABSTRACTThe diffusion of Sb and B markers has been studied in vacancy supersaturations produced by MeV Si implantation in float zone (FZ) silicon and bonded etch-back silicon-on-insulator (BESOI) substrates. MeV Si implantation produces a vacancy supersaturated near-surface region and an interstitial-rich region at the projected ion range. Transient enhanced diffusion (TED) of Sb in the near surface layer was observed as a result of a 2 MeV Si+, 1×1016/cm2, implant. A 4× larger TED of Sb was observed in BESOI than in FZ silicon, demonstrating that the vacancy supersaturation persists longer in BESOI than in FZ. B markers in samples with MeV Si implant showed a factor of 10× smaller diffusion relative to markers without the MeV Si+ implant. This data demonstrates that a 2 MeV Si+ implant injects vacancies into the near surface region.


2004 ◽  
Vol 810 ◽  
Author(s):  
A. Halimaoui ◽  
J. M. Hartmann ◽  
C. Laviron ◽  
R. El-Farhane ◽  
F. Laugier

ABSTRACTPreviously published articles have shown that co-implanted fluorine reduces transient enhanced diffusion of boron. However, it is not yet elucidated whether this effect is due to interaction of fluorine with point-defects or boron atoms. In this work, we have used boron redistribution in a shallow Delta-doped Si structures in order to get some insights into the role of fluorine in the boron diffusion. The structures consisted of 3 boron-doped layers separated by 40nm-thick undoped silicon. The samples were given to Ge preamorphization and F co-implant. SIMS depth profiling was used to analyse boron redistribution after annealing. The results we obtained strongly suggest that fluorine is not interacting with point-defects. The reduction in boron TED is most probably due to boron-fluorine interaction.


2000 ◽  
Vol 610 ◽  
Author(s):  
Omer Dokumaci ◽  
Paul Ronsheim ◽  
Suri Hegde ◽  
Dureseti Chidambarrao ◽  
Lahir Shaik-Adam ◽  
...  

AbstractThe effect of nitrogen implants on boron transient enhanced diffusion was studied for nitrogen-only, boron-only, and boron plus nitrogen implants. A boron buried layer was used as a detector for interstitial supersaturation in the samples. Boron dose ranged from 1×1014 to 1×1015 cm−2 and N2+ dose from 5×1013 and 5×1014 cm−2. The energies were chosen such that the location of the nitrogen and boron peaks matched. After the implants, RTA and low temperature furnace anneals were carried out. The diffusivity enhancements were extracted from the buried layer profiles by simulation. Nitrogen-only implants were found to cause significant enhanced diffusion on the buried boron layer. For lower doses, the enhancement of the nitrogen implant is about half as that of boron whereas the enhancements are equal at higher doses. Nitrogen coimplant with boron increases the transient enhanced diffusion of boron at low boron doses, which implies that nitrogen does not act as a strong sink for excess interstitials unlike carbon. At high boron doses, nitrogen co-implant does not significantly change boron diffusion. Sheet resistance measurements indicate that low nitrogen doses do not affect the activation of boron whereas high nitrogen doses either reduce the activation of boron or the mobility of the holes.


1997 ◽  
Vol 490 ◽  
Author(s):  
Noriyuki Sugiyasu ◽  
Kaina Suzuki ◽  
Syuichi Kojima ◽  
Yasushi Ohyama

ABSTRACTWe have proposed a coupled and de-coupled combined method to solve partial differential equations for a transient enhanced diffusion model. In the case of a boron diffusion process, the sum of concentrations of interstitial Si and of impurity-interstitial pair, the sum of concentrations of vacancy and of impurity-vacancy pair and each chemical impurity concentration are kept constant. The charge neutrality law is also applied. This procedure has realized a robust solution system which is implemented into our in-house FEM-based 2-D process simulator, and transient enhanced diffusion simulations for a sub-quarter micron nMOSFET have been demonstrated.


1997 ◽  
Vol 469 ◽  
Author(s):  
H. S. Chao ◽  
P. B. Griffin ◽  
J. D. Plummer

ABSTRACTThe transient enhanced diffusion behavior of B after ion implantation above the amorphization threshold is investigated. The experimental structure uses a layer of epitaxially grown Si, uniformly doped with B to act as a diffusion monitor. Wafers using this structure are implanted with amorphizing doses of Si, As, or P and annealed for various times at various temperatures. The experimental results show that upon annealing after Si implantation, there is a large amount of B pile-up that occurs at the amorphous/crystalline (A/C) interface while B is depleted from the region just beyond the A/C interface. This pile-up/depletion phenomenon can be attributed to the dislocation loops that form at the A/C interface. These loops act as sinks for interstitial point defects. There is also B pile-up/depletion behavior for As and P implants as well. However, this behavior may be explained by an electric field enhancement effect. While dislocation loops are known to form at the A/C interface for all of the investigated implant conditions, it appears that while they are necessary to simulate for Si amorphizing implants, they may not be necessary to simulate for As and P amorphizing implants.


1996 ◽  
Vol 438 ◽  
Author(s):  
Alp H. Gencer ◽  
Scott T. Dunham

It has been observed that dislocation loops form and grow during annealing of silicon wafers implanted at doses above the amorphization threshold. Dislocation loops can act to store interstitials for prolonged periods of anneals, sustaining an interstitial super-saturation and thus causing substantial transient enhanced diffusion (TED). We have developed a comprehensive model which, in combination with a model and parameters for s{311} defects from previous work, accounts for the formation and evolution of dislocation loops during ion implant annealing, as well as giving the correct TED behavior.


1999 ◽  
Vol 568 ◽  
Author(s):  
Jinning Liu ◽  
Kevin S. Jones ◽  
Daniel F. Downey ◽  
Sandeep Mehta

ABSTRACTTo meet the challenge of achieving ultra shallow p+/n source/drain extension junctions for 0.1 Oim node devices, ultra low energy boron implant and advanced annealing techniques have been explored. In this paper, we report the extended defect and boron diffusion behavior with various implant and annealing conditions. Boron implants were performed at energies from 0.25keV to lkeV and doses of 5 × 1014 cm−2 and 1 × 1015cm−2. Subsequent anneals were carried out in nitrogen ambient. The effect of energy, dose and oxide capping on extended defect formation and enhanced dopant diffusion was examined. It was observed that a thin screen oxide layer (35Å), grown prior to implantation, reduces the concentration of dopant in the Si by a significant amount as expected. This oxide also reduces the dislocation loops in the lattice and lowers diffusion enhancement of the dopant during annealing. The final junction depth can be optimized by using a low thermal budget spike anneal in a controlled oxygen ambient.


Sign in / Sign up

Export Citation Format

Share Document