A Comparison of Small Angle Neutron Scattering and X-Ray Diffraction Studies of Cobalt Precipitates in A Cu-0.95 at. % Co Alloy

1986 ◽  
Vol 82 ◽  
Author(s):  
S. Spooner ◽  
S. Iida ◽  
B. C. Larson

ABSTRACTA detailed comparison of small-angle scattering (SANS) and large angle x-ray diffraction methods of characterization of precipitates was undertaken. Cobalt-rich precipitates on the order of 50 Å developed after a 17 hour anneal at 570°C were studied in a single crystal sample with SANS and with diffuse x-ray scattering near the (400)Bragg peak. Each scattering data set was analyzed independently in terms of a distribution of precipitate sizes; a detailed comparison is made of the size distribution obtained. A small interparticle interference effect is seen.

Dorothy Hodgkin - as crystallographer, scientist and human being - far surpasses most, and so it is not easy to write about her many-splendoured personality. Instead, my aim here will he to discuss her influence on the growth of X-ray crystallography in India, directly through those who worked with her and indirectly by her travelling all over this country. In such an account, one must be pardoned for some personal element creeping in. In the twenties, India had developed a fairly strong tradition in X-ray physics. The six-week visit of C.V. Raman to Europe in 1921 greatly changed his research interests. On seeing the blue of the Mediterranean he started his researches on the scattering of light in liquids which finally culminated in the discovery of what is now called the Raman Effect. His encounter with Sir William Bragg and his work on naphthalene structure started three lines of research in India. First, Raman fabricated an X-ray tube and was amongst the earliest to use X-ray diffraction as a structural tool to study liquids. He showed that while in large-angle scattering the haloes reflected specific molecular sizes and packing shapes, small-angle scattering was directly related to the statistical fluctuation of density in a liquid. Second, Raman knew that Bragg’s first structure of naphthalene was not consistent with its birefringence, while the second one was. With this as cue he and his school launched extensive studies on the optical and magnetic anisotropy of organic crystals to get vital information on the arrangements of molecules in the crystalline state. Third, one of his students, Kedareshwar Bannerjee, was amongst the earliest to probe into the problem of phase determination by direct methods and for this he used Bragg’s data on naphthalene. Unfortunately, in spite of this early lead, it was not until 1951 that the first crystal structure was solved in India using Fourier methods by Gopinath Kartha. The Indian Institute of Science (IISc) had great hopes of starting a powerful school of X-ray crystallography when G.N. Ramachandran came back from Cambridge. But he went over to Madras, and there he established one of the most renowned Schools of Biophysics. With Gopinath Kartha he solved the structure of collagen.


2018 ◽  
Vol 63 (6) ◽  
pp. 874-882 ◽  
Author(s):  
A. A. Semenov ◽  
V. V. Volkov ◽  
A. V. Zabrodin ◽  
V. V. Gorlevskii ◽  
M. S. Sheverdyaev ◽  
...  

2008 ◽  
Vol 23 (12) ◽  
pp. 3196-3212 ◽  
Author(s):  
Yusuf Yusufoglu ◽  
Yanyan Hu ◽  
Mathumai Kanapathipillai ◽  
Matthew Kramer ◽  
Yunus E. Kalay ◽  
...  

Thermoreversibly gelling block copolymers conjugated to hydroxyapatite-nucleating peptides were used to template the growth of inorganic calcium phosphate in aqueous solutions. Nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), transmission electron microscopy, x-ray diffraction, and small-angle scattering were used to characterize these samples and confirm that the peptides promoted the growth of hydroxyapatite as the inorganic phase. Three different polymer templates were used with varying charges on the polymer chains (nonionic, anionic, and zwitterionic), to investigate the role of charge on mineralization. All of the polymer-inorganic solutions exhibited thermoreversible gelation above room temperature. Nanocomposite formation was confirmed by solid-state NMR, and several methods identified the inorganic component as hydroxyapatite. Small angle x-ray scattering and electron microscopy showed thin, elongated crystallites. Thermogravimetric analysis showed an inorganic content of 30–45 wt% (based on the mass of the dried gel at ∼200 °C) in the various samples. Our work offers routes for bioinspired bottom-up approaches for the development of novel, self-assembling, injectable nanocomposite biomaterials for potential orthopedic applications.


1967 ◽  
Vol 11 ◽  
pp. 332-338 ◽  
Author(s):  
Donald M. Koffman

AbstractAn X-ray small-angle scattering instrument is described which is used for recording X-ray diffraction patterns or small-angle X-ray scattering curves in an angular region very close to the direct beam. The measurement of X-ray intensity is accomplished with standard geiger or scintillation counter techniques. The instrument is designed for use with a spot-focus or vertical-line X-ray source, In essence, it is a multiple-reflection double-crystal diffractometer, based on a concept developed by Bonse and Hart, employing two grooved perfect germanium crystals arranged in the parallel position. Multiple diffraction from these crystals produces a monochromated X-ray beam which can be several millimeters wide while still exhibiting extremely high angular resolution. As a result, effective sample volumes can be employed with maximum volume-to-thickness ratios. The principal features of the instrument are discussed with emphasis on the advantages of this device over those employing complex slit systems and film-re cording techniques, Data are presented to illustrate the operation, intensity, and resolution of the unit.


2020 ◽  
Vol 22 (22) ◽  
pp. 12713-12723 ◽  
Author(s):  
Lukas Ludescher ◽  
Roland Morak ◽  
Stephan Braxmeier ◽  
Florian Putz ◽  
Nicola Hüsing ◽  
...  

Apparent strain artifacts resulting from the evaluation of small-angle X-ray scattering data superimpose the actual adsorption induced deformation in silica with hierarchical porosity. These artifacts can be corrected for by detailed modelling.


1995 ◽  
Vol 10 (3) ◽  
pp. 170-172
Author(s):  
Stefano Battaglia

A technique is presented utilizing an unmodified commercial X-ray diffractometer, equipped with a Bragg–Brentano geometry, for reducing preferred orientation effects in measured intensities during quantitative diffraction analysis. The diffractometer setup examined makes possible data acquisition with Θ fixed at 1° and 2Θ scanning the Bragg line. The results obtained with this technique are shown in the quantitative X-ray diffraction analysis of three international standards of carbonate rocks (401,402,403).


2001 ◽  
Author(s):  
Karen K. Siu ◽  
Andrei Y. Nikulin ◽  
James Hester ◽  
Andreas K. Freund ◽  
Tetsuya Ishikawa

2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Ge Wang ◽  
Wenxiang Cong ◽  
Haiou Shen ◽  
Yu Zou

Although x-ray imaging is widely used in biomedical applications, biological soft tissues have small density changes, leading to low contrast resolution for attenuation-based x-ray imaging. Over the past years, x-ray small-angle scattering was studied as a new contrast mechanism to enhance subtle structural variation within the soft tissue. In this paper, we present a detection method to extract this type of x-ray scattering data, which are also referred to as dark-field signals. The key idea is to acquire an x-ray projection multiple times with varying collimation before an x-ray detector array. The projection data acquired with a collimator of a sufficiently high collimation aspect ratio contain mainly the primary beam with little scattering, while the data acquired with an appropriately reduced collimation aspect ratio include both the primary beam and small-angle scattering signals. Then, analysis of these corresponding datasets will produce desirable dark-field signals; for example, via digitally subtraction. In the numerical experiments, the feasibility of our dark-field detection technology is demonstrated in Monte Carlo simulation. The results show that the acquired dark field signals can clearly reveal the structural information of tissues in terms of Rayleigh scattering characteristics.


2006 ◽  
Vol 39 (5) ◽  
pp. 671-675 ◽  
Author(s):  
William T. Heller

A method is presented for constructing one- and two-ellipsoid, core-shell-ellipsoid, cylinder and ellipsoid-plus-cylinder models from small-angle X-ray and neutron scattering data that calculates statistics on the resulting structural parameters. The method, implemented in the softwareELLSTAT, is capable of simultaneously fitting against several data sets and calculates averages, standard deviations and coefficients of linear correlation between the structural parameters of the resulting models. In this way, an improved understanding of the extent of the variability in and the interdependency between the model parameters that fit the input scattering data is developed, thereby providing a measure of the uniqueness of the models.


Sign in / Sign up

Export Citation Format

Share Document