An Approach to the Teaching of Functional Materials for Materials Science and Engineering Undergraduate Courses

2004 ◽  
Vol 827 ◽  
Author(s):  
Trevor R. Finlayson ◽  
Barry C. Muddle

AbstractTraditional materials science and engineering texts have, for the most part, focussed on instructing the undergraduate student on the physical properties of materials and providing a significant knowledge base from which, subsequently, to consider materials applications. With the increasing demand for professional materials scientists and engineers to embrace all classes of materials in their everyday applications, it is increasingly important for undergraduate teaching to increase the awareness of students to applications through a focus on functionality rather than just providing a thorough knowledge and understanding of material properties. This has become even more important in the area of “nanostructured” materials where functional devices are designed at the material fabrication stage. In this paper, recent experiences in the teaching of functional materials for electronic, thermal and optical applications, to a second level undergraduate student group, comprising both “science” and “engineering” students, are outlined and some initial outcomes from the assessment of the group discussed.

2021 ◽  
Vol 22 (9) ◽  
pp. 4543
Author(s):  
Xuan-Hung Pham ◽  
Seung-min Park ◽  
Bong-Hyun Jun

Nano/micro particles are considered to be the most valuable and important functional materials in the field of materials science and engineering [...]


2019 ◽  
Vol 15 ◽  
pp. 89-95 ◽  
Author(s):  
Hiroaki Yoshida ◽  
Ken Kikuta ◽  
Toshiyuki Kida

Direct electrospinning of small molecules has great potential to fabricate a new class of fiber materials because this approach realizes the creation of various functional materials through the numerous molecular combinations. In this paper, we demonstrate a proof-of-concept to fabricate supramolecular fiber materials composed of cyclodextrin (CD)–fullerene inclusion complexes by electrospinning. Similar to the molecular state of fullerenes in solution, the resulting fibers include molecularly-dispersed fullerenes. We believe such a concept could be expanded to diverse host–guest complexes, opening up supramolecular solid materials science and engineering.


2017 ◽  
pp. 1465-1483 ◽  
Author(s):  
D. Vergara ◽  
M. Lorenzo ◽  
M.P. Rubio

The use of virtual resources in university teaching is becoming a key issue, especially in engineering degrees where novel virtual environments are being developed. This chapter described a study on the opinions of engineering students with regard to the use of diverse virtual applications in subjects related to Materials Science and Engineering. From 2011 to 2014, engineering students of several universities and diverse nationalities were surveyed regarding their views on using virtual environments in learning. The results presented in this chapter showed that students gave great importance to the use of virtual resources in university teaching but, at the same time, they also considered the presence of the teacher in the classroom to be very essential. The findings also provided the timetable distribution of topics that, according to the students' opinion, should be considered in the subjects of Materials Science, such as master classes, problem solving classes, practical classes in both real and virtual laboratories.


MRS Bulletin ◽  
1992 ◽  
Vol 17 (9) ◽  
pp. 32-35
Author(s):  
John R. Ambrose

Those in charge of creating and endorsing curricula for engineering colleges appear to generally agree that materials science should be included. More than jus an acceptance of ABET (Accreditation Board for Engineering and Technology) certification requirements, the consensus view is that engineers really need to know about the materials they will someday use Unfortunately, there appears to be some disagreement about where this exposure to materials science fits into the overal scheme of things (scheduling or course sequence, so to speak). There is also dis agreement as to what engineering students should know about materials and by inference, as to who is most knowledge able and best qualified to teach this information. As a result of these disagreements students at some engineering departments have had to take, during the final semester, an introductory materials course taugh by instructors whose professional experience lies outside materials science and engineering.


2001 ◽  
Vol 684 ◽  
Author(s):  
Katherine C. Chen ◽  
Paul T. Adalian

ABSTRACTEnabling students to become independent learners is a desirable goal for many educators. However, the task is not always easily addressed with the long lists of concrete, technical objectives that must usually be covered in classes. As a result, information often follows a oneway path from the instructor to the student, and students can develop a reliance on “packaged” knowledge and answers from only teachers and textbooks. In efforts to engage students in the learning process and to encourage the self-directed exploration of knowledge, “information competence” [1] has been incorporated into an upper-level materials course. Using current topics in materials science and engineering, students formulate questions to address specific issues and then locate pertinent information. A variety of resources, such as newspapers, web sites, and scholarly journals, are explored and evaluated. The instructor acts as a facilitator that assists with search strategies and evaluation of the information. Students develop the ability to process and reorganize the information into useful forms (e.g., reports, oral presentations). Providing the tools and instructions to function effectively in this Information Age will hopefully promote lifelong learning in today's students.


2002 ◽  
Vol 760 ◽  
Author(s):  
Antonia Moropoulou ◽  
Eleni Aggelakopoulou ◽  
Nicolas P. Avdelidis ◽  
Maria Koui

ABSTRACTIn this paper, the example of the Materials Science and Engineering (MSE) Curriculum that exists as a scientific direction in the undergraduate programme of the Chemical Engineering School, in the National Technical University of Athens (NTUA), in Greece, is presented. The course content includes several tools, such as theoretical lessons, laboratory modules - nondestructive testing (NDT) and instrumental techniques - semi industrial scale devices, fieldworks and a dissertation thesis. The presented curriculum can be regarded as an innovative educational model for chemical engineering students that choose to become involved in the field of MSE.


Author(s):  
John F. Mansfield

To introduce engineering undergraduates to one of the most widely used microstructural characterization tool, namely the scanning electron microscope (SEM), the Department of Materials Science and Engineering (MS&E) at The University of Michigan has developed the Teaching SEM. This instrument is located in the department’s undergraduate teaching laboratory, however, it may be controlled from a lecture theater or classroom virtually anywhere on the University campus, or indeed, anywhere within the reach of the campus computing network and cable television network. The Teaching SEM allows MS&E to incorporate live SEM demos in the large service courses it teaches to engineering students and to show entire classes of MS&E majors how to control the microscope that tfiey subsequently use in their laboratory practicals.The Teaching SEM has been developed with hardware and software that is readily available, and there has been no custom software development or manufacture of specialized hardware. In addition to being a novel teaching tool, it also demonstrates the ease with which it is possible to do “Telepresence Microscopy”.


2017 ◽  
Vol 50 (3) ◽  
pp. 949-950 ◽  
Author(s):  
Fernando Bardella ◽  
Andre Montes Rodrigues ◽  
Ricardo Mendes Leal Neto

CrystalWalk is a crystal editor and visualization software designed for teaching materials science and engineering. Based on WebGL/HTML5, it provides an accessible and interactive platform to students and teachers by introducing a simplified crystallographic approach that creates crystal structures by combining a lattice with a motif without the use of its internal symmetry. CrystalWalk is the first software to use solely translational symmetry, aiming to introduce engineering students to the basic concepts of lattice and motif. Although very restrictive from the crystallographic point of view, CrystalWalk makes it simple for students to experiment, reproduce and visualize, in an interactive manner, most of the crystal structures that are commonly introduced in materials science and engineering curricula.


Sign in / Sign up

Export Citation Format

Share Document