Adsorption of Oxygen on Sodium Saturated Cu{110}

1986 ◽  
Vol 83 ◽  
Author(s):  
D. E. Grider ◽  
J. F. Wendelken

ABSTRACTThe adsorption of oxygen on a sodium saturated Cu{110} surface is examined with x-ray photoelectron spectroscopy (XPS) in an extension of a previous study of this system which utilized low energy electron diffraction (LEED), and high resolution electron energy loss spectroscopy (HREELS). The sodium overlayer, despite the presence of an initial oxide contaminant, shows metallic character. Intentionally adsorbed oxygen is in a different chemical state than the initial oxygen contaminant and causes a reduction in the metallic character of the sodium. The sticking coefficient for oxygen on the sodium saturated surface is almost three times greater than for the bare Cu{11O} surface.

1998 ◽  
Vol 05 (01) ◽  
pp. 381-385 ◽  
Author(s):  
S. A. Chambers ◽  
M. A. Henderson ◽  
Y. J. Kim ◽  
S. Thevuthasan

We have used high-energy X-ray photoelectron spectroscopy and diffraction (XPS/XPD), low-energy electron diffraction (LEED), high-resolution electron energy loss spectroscopy (HREELS) and temperature-programmed desorption (TPD) to determine the molecular orientation, long-range order, vibrational frequencies, and desorption temperatures for formic acid and its decomposition products on TiO 2(110). Molecular adsorption occurs at coverages approaching one monolayer, producing a weakly ordered (2 × 1) surface structure. High-energy XPD reveals that the formate binds rigidly in a bidentate fashion through the oxygens to Ti cation rows along the [001] direction with an O–C–O bond angle of 126 ± 4°. During TPD some surface protons and formate anions recombine and desorb as formic acid above 250 K. However, most of the decomposition products follow reaction pathways leading to H 2 O , CO and H 2 CO desorption. Water is formed in TPD below 500 K via the abstraction of lattice oxygen by deposited acid protons.


1998 ◽  
Vol 513 ◽  
Author(s):  
J. A. Schaefer ◽  
T. Balster ◽  
V. Polyakov ◽  
U. Rossow ◽  
S. Sloboshanin ◽  
...  

ABSTRACTWe review structural and electronic aspects of the reaction of hydrogen with semiconductor surfaces. Among others, we address the Si(100), GexSi1-x(100), GaAs(100), InP(100), SiC(100), SiC(0001) and SiC(0001) surfaces. It is demonstrated that high resolution electron energy loss spectroscopy (HREELS) in conjunction with a number of other surface sensitive techniques like low energy electron diffraction (LEED) and photoelectron spectroscopy (XPS/UPS) can yield important information about the surface atomic structure, the effects of hydrogen passivation and etching and on electronic properties of the surfaces.


2005 ◽  
Vol 483-485 ◽  
pp. 547-550 ◽  
Author(s):  
Konstantin V. Emtsev ◽  
Thomas Seyller ◽  
Lothar Ley ◽  
A. Tadich ◽  
L. Broekman ◽  
...  

We have investigated Si-rich reconstructions of 4H-SiC( 00 1 1 ) surfaces by means of low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy (XPS), and angleresolved ultraviolet photoelectron spectroscopy (ARUPS). The reconstructions of 4H-SiC( 00 1 1 ) were prepared by annealing the sample at different temperatures in a flux of Si. Depending on the temperature different reconstructions were observed: c(2×2) at T=800°C, c(2×4) at T=840°C. Both reconstructions show strong similarities in the electronic structure.


1992 ◽  
Vol 242 ◽  
Author(s):  
Andrew Freedman ◽  
Gary N. Robinson ◽  
Charter D. Stinespring

ABSTRACTDiamond (111) surfaces with the dehydrogenerated 2×1 reconstruction have been exposed to a beam of atomic fluorine at 300 K. The uptake of fluorine, as measured using X-ray photoelectron spectroscopy, is quite efficient and saturates at a coverage of less than a monolayer. Low energy electron diffraction patterns indicate that fluorine termination of the diamond surface produces a lxi bulk-like reconstruction in contrast to the disordered surface produced on the (100) surface.


Sign in / Sign up

Export Citation Format

Share Document