All Solid-State Batteries Using Super Ionic Conductor, Thio-Lisicon – Electrode/Electrolyte interfacial Design

2004 ◽  
Vol 835 ◽  
Author(s):  
Takesh Kobayashi ◽  
Taro Inada ◽  
Noriyuki Sonoyama ◽  
Atsuo Yamada ◽  
Ryoji Kanno

ABSTRACTAll solid-state ceramic lithium battery was studied using a composite anode, the thio-LISICON (Li3.25Ge0.25P0.75S4) solid electrolyte, and the Chevrel phase cathode. The nano-composite of cathode configuration reduced the interfacial resistance and provided fast-charge transfer at the interface. The self-assembled solid-electrolyte interfacial (SEI) phase was formed at the Li-Al/SE interface, while no formation was observed at the Li-In/SE interface. The SEI phase reduced the interfacial resistance and provided high charge-discharge characteristics. The all solid-state cell showed high current density of 1.3C rate and is a promising candidate for future lithium battery system.

2020 ◽  
Author(s):  
Ankit Verma ◽  
Hiroki Kawkami ◽  
Hiroyuki Wada ◽  
Anna Hirowatari ◽  
Nobuhisa Ikeda ◽  
...  

Interfacial deposition stability at the lithium metal-solid electrolyte interface in all solid-state batteries (ASSB) is governed by the stress-transport-electrochemistry coupling in conjunction with the polycrystalline/amorphous solid electrolyte architecture. In this work, we delineate the optimal solid electrolyte microstructure comprising of grains, grain boundary and voids possessing desirable ionic conductivity and elastic modulus for superior transport and strength. An analytical formalism is provided to discern the impact of external “stack” pressure induced mechanical stress on electrodeposition stability; stress magnitude obtained are in the megapascal range considerably diminishing the stress-kinetics effects. For experimental stack pressures ranging up to 10 MPa, the impact of stress on reaction kinetics is negligibly small and electrolyte transport overpotentials dictate electrodeposition stability. We detail the deposition stability phase map as a function of solid electrolyte to Li metal shear modulus and molar volume ratios under varying operating conditions including external pressure, surface roughness, applied current density and ambient temperature. High current density operation with stable deposition can be ensured with ample external pressure, high temperature and low surface roughness operation for low shear modulus ratio of the solid electrolyte to Li metal. <br>


2020 ◽  
Author(s):  
Ankit Verma ◽  
Hiroki Kawkami ◽  
Hiroyuki Wada ◽  
Anna Hirowatari ◽  
Nobuhisa Ikeda ◽  
...  

Interfacial deposition stability at the lithium metal-solid electrolyte interface in all solid-state batteries (ASSB) is governed by the stress-transport-electrochemistry coupling in conjunction with the polycrystalline/amorphous solid electrolyte architecture. In this work, we delineate the optimal solid electrolyte microstructure comprising of grains, grain boundary and voids possessing desirable ionic conductivity and elastic modulus for superior transport and strength. An analytical formalism is provided to discern the impact of external “stack” pressure induced mechanical stress on electrodeposition stability; stress magnitude obtained are in the megapascal range considerably diminishing the stress-kinetics effects. For experimental stack pressures ranging up to 10 MPa, the impact of stress on reaction kinetics is negligibly small and electrolyte transport overpotentials dictate electrodeposition stability. We detail the deposition stability phase map as a function of solid electrolyte to Li metal shear modulus and molar volume ratios under varying operating conditions including external pressure, surface roughness, applied current density and ambient temperature. High current density operation with stable deposition can be ensured with ample external pressure, high temperature and low surface roughness operation for low shear modulus ratio of the solid electrolyte to Li metal. <br>


2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


Nanoscale ◽  
2021 ◽  
Author(s):  
Feihu Tan ◽  
Hua An ◽  
Ning Li ◽  
Jun Du ◽  
Zhengchun Peng

As flexible all-solid-state batteries are highly safe and lightweight, they can be considered as candidates for wearable energy sources. However, their performance needs to be first improved, which can be...


Author(s):  
Diego Holanda Pereira de Souza ◽  
Kasper T. Møller ◽  
Stephen A. Moggach ◽  
Terry D Humphries ◽  
Anita D’Angelo ◽  
...  

Metal boron-hydrogen compounds are considered as promising solid electrolyte candidates for the development of all-solid-state batteries (ASSB), owing to the high ionic conductivity exhibited by closo- and nido-boranes. In this...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A-Young Kim ◽  
Florian Strauss ◽  
Timo Bartsch ◽  
Jun Hao Teo ◽  
Jürgen Janek ◽  
...  

AbstractWhile still premature as an energy storage technology, bulk solid-state batteries are attracting much attention in the academic and industrial communities lately. In particular, layered lithium metal oxides and lithium thiophosphates hold promise as cathode materials and superionic solid electrolytes, respectively. However, interfacial side reactions between the individual components during battery operation usually result in accelerated performance degradation. Hence, effective surface coatings are required to mitigate or ideally prevent detrimental reactions from occurring and having an impact on the cyclability. In the present work, we examine how surface carbonates incorporated into the sol–gel-derived LiNbO3 protective coating on NCM622 [Li1+x(Ni0.6Co0.2Mn0.2)1–xO2] cathode material affect the efficiency and rate capability of pellet-stack solid-state battery cells with β-Li3PS4 or argyrodite Li6PS5Cl solid electrolyte and a Li4Ti5O12 anode. Our research data indicate that a hybrid coating may in fact be beneficial to the kinetics and the cycling performance strongly depends on the solid electrolyte used.


2021 ◽  
Vol 11 (1) ◽  
pp. 96-104
Author(s):  
Ruziel Larmae Gimpaya ◽  
Shari Ann Botin ◽  
Rinlee Butch Cervera

An all-solid-state Lithium button cell with Ga-doped Li7La3Zr2O12 (Ga-LLZO) as solid electrolyte, LiFePO4-based as cathode, and Li metal as anode has been successfully fabricated and characterized. The solid electrolyte was first optimized to obtain a high total conductivity. Different compositions of Li7-3xGaxLa3Zr2O12, where x =0, 0.1, 0.2, and 0.3. Li7La3Zr2O12 (LLZO) were synthesized using solid-state reaction and were characterized for its structural, morphological, electrical conductivity properties. XRD patterns of all sintered samples showed that all of the major peaks can be indexed to a cubic-phased garnet LLZO. SEM images revealed a densified sintered samples with relative densities of about 90% for all samples. Among the different studied compositions, the Ga-doped LLZO with x = 0.1 achieved the highest total conductivity of about 2.03 x 10-4 Scm-1 at 25oC, with an activation energy of 0.31 eV. From this solid electrolyte, an all-solid-state Lithium battery, 2032 button cell, was fabricated using LiFePO4-based cathode and Lithium metal as the anode. Charging and discharging characteristics were performed at 1C, 0.5C, and 0.2C rates. The results showed a good retention of coloumbic efficiency even after 50 cycles of charge and discharge. The capacity retention is about 15-20% after 50 cycles. The best performance of the coin cell battery revealed an initial specific discharging capacity of about 140 mAh/g using C/5 rate.


Sign in / Sign up

Export Citation Format

Share Document