Theoretical Study on Open-Shell Nonlinear Optical Systems

2004 ◽  
Vol 846 ◽  
Author(s):  
Masayoshi Nakano ◽  
Ryohei Kishi ◽  
Nozomi Nakagawa ◽  
Tomoshige Nitta ◽  
Takashi Kubo ◽  
...  

ABSTRACTThe static second hyperpolarizabilities (γ) of open-shell organic nonlinear optical (NLO) systems composed of singlet diradical molecules are investigated using ab initio molecular orbital (MO) and density functional theory (DFT) methods. It is found that neutral singlet diradical systems with intermediate diradical characters tend to enhance γ as compared to those with small and large diradical characters. This suggests that the diradical character is a novel control parameter of γ for singlet diradical systems.

RSC Advances ◽  
2016 ◽  
Vol 6 (96) ◽  
pp. 94228-94235 ◽  
Author(s):  
Maria Maria ◽  
Javed Iqbal ◽  
Khurshid Ayub

The effect of alkali metal (Li, Na, and K) doping in aluminum nitride (Al12N12) nanocages is studied through density functional theory (DFT) methods.


2013 ◽  
Vol 12 (04) ◽  
pp. 1350029 ◽  
Author(s):  
XIAOFENG DU ◽  
NANA MA ◽  
SHILING SUN ◽  
HAIMING XIE ◽  
YONGQING QIU

The nonlinear optical (NLO) properties of Λ-shaped diarylethene (DAE) derivatives 1a(b)–4a(b) and their NLO switching effects were studied by using the density functional theory (DFT) methods. The results demonstrate that all of the open-ring molecules and their own closed-ring forms meet the model of NLO switching tuned by photoisomerization. The βtot values of 1b–3b are 16 times as small as that of their open-ring forms, and βtot value of 4b is 4 times as large as that of 4a. The spin interactions of open-shell closed-ring molecules are larger than that of their open-ring forms, and it could increase the NLO responses to some degree. Nature bond orbital (NBO) calculations indicate that large charge differences between electron-deficient and electron-rich centers are beneficial to charge transfer (CT), and the overlap between frontier molecular orbital (FMO) is also advantageous to the CT and NLO responses. Time-dependent density functional theory (TD-DFT) calculations show βtot values of all molecules meet the two-level model very well, and the smaller the ΔE ge , the larger the βtot value.


RSC Advances ◽  
2016 ◽  
Vol 6 (19) ◽  
pp. 15759-15769 ◽  
Author(s):  
Meriem Awatif Mahi ◽  
Sidi Mohamed Mekelleche ◽  
Wafaa Benchouk ◽  
M. José Aurell ◽  
Luis Ramón Domingo

The intramolecular Povarov (IMP) reactions involved in the synthesis of 5H-chromeno[2,3-c] acridine derivatives [Tetrahedron Lett., 2010, 51, 3071–3074] have been studied using density functional theory (DFT) methods.


2018 ◽  
Vol 73 (11) ◽  
pp. 1037-1045 ◽  
Author(s):  
Aijaz Rasool Chaudhry ◽  
Shabbir Muhammad ◽  
Ahmad Irfan ◽  
Abdullah G. Al-Sehemi ◽  
Bakhtiar Ul Haq ◽  
...  

AbstractUsing density functional theory (DFT) methods, we shed light on the structural, optical, electronic, and nonlinear optical (NLO) properties of three derivatives of 9,12-diiodo-1,2-dicarba-closo-dodecaborane(12) (C2H10B10I2). The DFT and time-dependent DFT methods are considered very precise and practical to optimize the ground and excited state geometries, respectively. A vibrant intramolecular charge transfer from highest occupied molecular orbitals (HOMOs) to the lowest unoccupied molecular orbitals (LUMOs) was observed in all compounds. The geometrical parameters of the experimental crystal structure, i.e. bond lengths/angles, have been successfully reproduced. The HOMO and LUMO energies, as well as their energy gaps (Eg), were also calculated and compared with each other for all derivatives. The effect of attached groups on electronic, optical, and NLO properties along with detailed structure-property relationship was discussed. For NLO response, the CAM-B3LYP functional along with relatively larger basis set 6-31+G** (for hydrogen, carbon, boron, and oxygen atoms) and LANL2DZ (for iodine atoms) have been used to optimize the compounds at ground states. The calculation of second-order NLO polarizabilities (βtot) shows that compounds 2 and 3 possess the βtot amplitudes of 3029 and 4069 a.u., respectively, with CAM-B3LYP method that are reasonably larger than similar prototype molecules. Owing to their unique V-shapes, the nonlinear anisotropy values are found to be 0.63, 0.34, and 0.44 for compounds 1–3, respectively, which show the significant two-dimensional character of these compounds. Thus, the NLO amplitudes as well as the nonlinear anisotropies indicate that the above-entitled compounds are good contenders for optical and NLO applications.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4811
Author(s):  
Marc Presset ◽  
Michel Rajzmann ◽  
Guillaume Dauvergne ◽  
Jean Rodriguez ◽  
Yoann Coquerel

Inversions in the periselectivity of formal aza-Diels–Alder cycloadditions between α-oxoketenes generated by a thermally-induced Wolff rearrangement and 1-azadienes were observed experimentally as a function of the α-oxoketene and the 1-azadiene, as well as the reaction temperature and time. Some unexpected inversion in the diastereoselectivity was observed, too. These variations in selectivities were fully rationalized by computational modeling using density functional theory (DFT) methods.


2019 ◽  
Vol 43 (15) ◽  
pp. 5727-5736 ◽  
Author(s):  
Faizan Ullah ◽  
Naveen Kosar ◽  
Khurshid Ayub ◽  
Mazhar Amjad Gilani ◽  
Tariq Mahmood

Three series of compounds Li2F@B12P12, Li3O@B12P12 and Li4N@B12P12 are theoretically designed and investigated for their nonlinear optical response using density functional theory (DFT).


Author(s):  
Virupakshi M Bhumannavar

Abstract: The structural confirmation of the title compound is done by theoretical and experimental study. Experimental techniques such as FTIR, proton NMR, UV-Visible, thermal analysis (TGA & DTA) are employed. Density functional theory is used to analyze spectroscopic data scrutinized. Second order nonlinear optical parameters are obtained. The experimental results are analyzed with theoretically obtained data from density functional theory. TD-DFT also employed for the MLDCLC at different basis set. Keywords: DFT Study, nonlinear optical study, FTIR, 1H NMR


Sign in / Sign up

Export Citation Format

Share Document