Structural, Electronic and Nonlinear Optical Properties of Novel Derivatives of 9,12-Diiodo-1,2-dicarba-closo-dodecaborane: Density Functional Theory Approach

2018 ◽  
Vol 73 (11) ◽  
pp. 1037-1045 ◽  
Author(s):  
Aijaz Rasool Chaudhry ◽  
Shabbir Muhammad ◽  
Ahmad Irfan ◽  
Abdullah G. Al-Sehemi ◽  
Bakhtiar Ul Haq ◽  
...  

AbstractUsing density functional theory (DFT) methods, we shed light on the structural, optical, electronic, and nonlinear optical (NLO) properties of three derivatives of 9,12-diiodo-1,2-dicarba-closo-dodecaborane(12) (C2H10B10I2). The DFT and time-dependent DFT methods are considered very precise and practical to optimize the ground and excited state geometries, respectively. A vibrant intramolecular charge transfer from highest occupied molecular orbitals (HOMOs) to the lowest unoccupied molecular orbitals (LUMOs) was observed in all compounds. The geometrical parameters of the experimental crystal structure, i.e. bond lengths/angles, have been successfully reproduced. The HOMO and LUMO energies, as well as their energy gaps (Eg), were also calculated and compared with each other for all derivatives. The effect of attached groups on electronic, optical, and NLO properties along with detailed structure-property relationship was discussed. For NLO response, the CAM-B3LYP functional along with relatively larger basis set 6-31+G** (for hydrogen, carbon, boron, and oxygen atoms) and LANL2DZ (for iodine atoms) have been used to optimize the compounds at ground states. The calculation of second-order NLO polarizabilities (βtot) shows that compounds 2 and 3 possess the βtot amplitudes of 3029 and 4069 a.u., respectively, with CAM-B3LYP method that are reasonably larger than similar prototype molecules. Owing to their unique V-shapes, the nonlinear anisotropy values are found to be 0.63, 0.34, and 0.44 for compounds 1–3, respectively, which show the significant two-dimensional character of these compounds. Thus, the NLO amplitudes as well as the nonlinear anisotropies indicate that the above-entitled compounds are good contenders for optical and NLO applications.

2013 ◽  
Vol 91 (9) ◽  
pp. 866-871 ◽  
Author(s):  
Silvia Gómez-Coca ◽  
Eliseo Ruiz

The exchange coupling constants of a Mn14 complex constituted by two weakly coupled Mn7 moieties were calculated using two different density functional theory (DFT) approaches: the Perdew–Burke–Ernzerhof (PBE) functional with a numerical basis set and the hybrid Becke, three-parameter Lee–Yang–Parr (B3LYP) functional employed with a Gaussian basis set. The sign and relative strength of the exchange coupling constants calculated with both methods were consistent; as expected, the values calculated with the PBE functional were slightly overestimated, as corroborated by comparison with the experimental magnetic susceptibility curve. Both methods gave a ground spin configuration of S = 3/2 for the Mn7 moiety, which was weakly antiferromagnetically coupled with the other Mn7 fragment, leading to an S = 0 ground spin configuration for the entire Mn14 complex.


2015 ◽  
Vol 93 (7) ◽  
pp. 708-714 ◽  
Author(s):  
Margarida S. Miranda ◽  
Darío J.R. Duarte ◽  
Joaquim C.G. Esteves da Silva ◽  
Joel F. Liebman

A computational study has been performed for protonated oxygen- or nitrogen-containing heterocyclic derivatives of cyclopropane and cyclopropanone. We have searched for the most stable conformations of the protonated species using density functional theory with the B3LYP functional and the 6-31G(2df,p) basis set. More accurate enthalpy values were obtained from G4 calculations. Proton affinities and gas-phase basicities were accordingly derived.


2011 ◽  
Vol 8 (s1) ◽  
pp. S195-S202
Author(s):  
Y. Belhocine ◽  
M. Bencharif

The structure and spectroscopic properties of polycyclic aromatic ligands of 2,3,6,7,10,11-hexakis (alkylthio) triphenylene (alkyl: methyl, ethyl, and isopropyl; corresponding to the abbreviations of the molecules: HMTT, HETT and HiPTT) were studied using density functional theory (DFT) and time dependent density functional theory (TD-DFT) methods with triple-zeta valence polarization (TZVP) basis set. It was shown that the type of functional theory used, Becke-Perdew (BP) and Leeuwen-Baerends (LB94) implemented in Amsterdam Density functional (ADF) program package, does not have essential influence on the geometry of studied compounds in both ground and excited states. However, significant differences were obtained for the band gap values with relativistic effects of the zero order regular approximation scalar corrections (ZORA) and LB94 functional seems to reproduce better the experimental optical band gap of these systems.


2021 ◽  
Author(s):  
Azadeh Jamshidi ◽  
Zeinab Biglari

Abstract The effect of alkali metals (Li, Na and K) interaction on the nonlinear optical response (NLO) of Ga12N12 nanocage has been performed using density functional theory (DFT) calculations. The results show that the exo-M@Ga12N12 structures are energetically favorable with negative interaction energies in the range of ‒1.50 to ‒2.28 eV. The electronic properties of decorated structures are strongly sensitive to interaction with the alkali metals. The HOMO-LUMO gap of Ga12N12 is reduced by about 70% due to the decoration with alkali metals. It is obtained that the adsorption of alkali metals over the tetragonal ring of Ga12N12 nanocage remarkably enhances the first hyperpolarizability up to 6.5×104 au. The results display that decorating Ga12N12 nanocage with alkali metals can be introduced it as a novel inorganic nanomaterial with significant NLO properties.


2019 ◽  
Vol 17 (10) ◽  
pp. 822-825 ◽  
Author(s):  
Ashok Kumar Mishra ◽  
Satya Prakash Tewari

The present study describes the spectroscopic characteristics like IR and Raman active vibrations, (1H, 13C) nuclear magnetic resonance (NMR) chemical shifts and UV-Visible spectra of the molecular geometry obtained using quantum chemistry calculations based on density functional theory approach via B3LYP hybrid functional at 6-31 + G(d, p) basis set of title bioactive natural compound. The calculated highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gap in titled compound is –0.14327 eV which is reasonably small and may be the prime reason for its bioactivity. Theoretical IR active vibration spectra show the maximum peak at 1146 cm–1. The maximum absorption in UV-Vis spectrum has been observed to be occurred at 329 nm. The biological activity has also been examined through virtual screening using molecular docking approach. The calculated spectroscopic characteristics are well aligned with their experi- mental counterparts. The obtained docking score predicts the title molecule to be a good naturally occurring anti diabetic agent. The outcomes of our investigation would be useful for deriving the structural analog of the title molecule for developing an efficient naturopathic anti diabetic drug agent with less side effects.


2013 ◽  
Vol 12 (04) ◽  
pp. 1350029 ◽  
Author(s):  
XIAOFENG DU ◽  
NANA MA ◽  
SHILING SUN ◽  
HAIMING XIE ◽  
YONGQING QIU

The nonlinear optical (NLO) properties of Λ-shaped diarylethene (DAE) derivatives 1a(b)–4a(b) and their NLO switching effects were studied by using the density functional theory (DFT) methods. The results demonstrate that all of the open-ring molecules and their own closed-ring forms meet the model of NLO switching tuned by photoisomerization. The βtot values of 1b–3b are 16 times as small as that of their open-ring forms, and βtot value of 4b is 4 times as large as that of 4a. The spin interactions of open-shell closed-ring molecules are larger than that of their open-ring forms, and it could increase the NLO responses to some degree. Nature bond orbital (NBO) calculations indicate that large charge differences between electron-deficient and electron-rich centers are beneficial to charge transfer (CT), and the overlap between frontier molecular orbital (FMO) is also advantageous to the CT and NLO responses. Time-dependent density functional theory (TD-DFT) calculations show βtot values of all molecules meet the two-level model very well, and the smaller the ΔE ge , the larger the βtot value.


2013 ◽  
Vol 303-306 ◽  
pp. 2563-2566
Author(s):  
Xin Wei Zhang ◽  
Cun Li ◽  
Jun Qi Xu

A series of chiral [6]helicenes have been designed using the molecular engineering of organic nonlinear optical materials. The geometries of [6]helicenes 1, 2, 3, 4,5 are optimized using density functional theory (DFT-B3LYP) method at the 6-31g (d, p) basis set level. Based on the obtained stable molecular configuration, we adopt the TDHT/PM3 method and time-dependent density-functional theory (TD-DFT) to calculate the nonlinear optical (NLO) properties and electronic spectra of these molecules. Results show that the static hyperpolarizability βµ alternates between positive value and negative value, whereas it remains positive for the molecues 2 and 3 which have medium magnitudes βµ, 3.4×10-30esu and 9.6×10-30esu respectively. In molecule 5, there exists two competitive charge transfers that reduce the hyperpolarizability β.


2015 ◽  
Vol 14 (04) ◽  
pp. 1550031
Author(s):  
Cemal Parlak ◽  
Münevver Gökce ◽  
Mahir Tursun ◽  
Lydia Rhyman ◽  
Ponnadurai Ramasami

The effects of varying halogen and solvent, in terms of vibrational and electronic properties, on the different conformers of 1-pentanamine [ CH 3( CH 2)4 NH 2] and 1,1-dihalogeno-pentan-1-amines [ CH 3( CH 2)3 CX 2 NH 2; X = F , Cl or Br ] were investigated by employing the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. The B3LYP functional was used with the 6-31++G(d,p) basis set. Computations were focused on the 10 conformational isomers of the compounds in the gas phase and both in non-polar (benzene) and polar (methanol) solvents. The present work explores the effects of the halogen and the medium on the conformational preference, and geometrical parameter, dipole moment, NH 2 vibrational frequency, UV spectrum, highest occupied and lowest unoccupied molecular orbitals (HOMO–LUMO) orbital and DOS diagram of the conformers. The atypical characteristics of fluorine and bromine affecting the electrical bandgap, chemical hardness, electronegativity, PDOS or OPDOS plots and the absorption band are observed correspondingly. The findings of this work can be useful to those systems involving changes in the conformations analogous to the compounds studied.


2005 ◽  
Vol 1 (1) ◽  
pp. 31-36 ◽  
Author(s):  
George Maroulis

We report a study of the performance of density functional theory (DFT) methods in the prediction of electric properties for the ozone molecule. We have used a large, flexible basis set for the calculation of the dipole moment and the dipole (hyper)polarizability with the B1LYP, B3LYP, B3P86, B3PW91, G96PW91 and MPW91PW91 methods. The results are compared to high-level, conventional ab initiomethods. We rely on a rigorous approach in order to evaluate the proximity and similarity of theoretical descriptions obtained via DFT and conventional ab initiomethods. We find that compared to the most accurate ab initio, DFT methods predict reliable dipole polarizabilities and second dipole hyperpolarizabilities for ozone. Agreement is less good for the dipole moment and the first dipole hyperpolarizability. Overall, the performance of the DFT is similar to that of the accurate ab initiomethods.


Sign in / Sign up

Export Citation Format

Share Document