Solution processable nanocomposites based on silsesquioxane cores for use in organic light emitting diodes (OLEDs)

2004 ◽  
Vol 847 ◽  
Author(s):  
Alan Sellinger ◽  
Ryo Tamaki ◽  
Richard M. Laine ◽  
Kazunori Ueno ◽  
Hiroshi Tanabe ◽  
...  

ABSTRACTA new family of materials that synergistically combine the attributes of both organic and inorganic properties for use in organic light emitting diodes (OLEDs) is presented. The hybrid materials are based on 3-D inorganic cores of octavinylsilsesquioxanes (OVS). The resultant materials have high Tg's (120–210°C), are formed from minimal step/high yield reactions and readily available starting reagents, are monodisperse (PDI<1.1), can be highly purified via common chroma-tographic techniques, and form defect-free amorphous films via spin-dip coating. For example TPD is known for its good hole injection/transport properties in OLED applications but suffers from a low Tg (65°C). TPD-OVS hybrid material has a Tg of 142°C while maintaining similar injection/transport properties to TPD. Photoluminescence analysis of the hybrid thin film reveals: 1) a 30 nm blue shift versus their dilute solution counterparts; and 2) 5 hour annealing cycles to within 10°C of their Tg show no indication of eximer formation (no red shift) that often causes reduced efficiencies in polymer LEDs.

2012 ◽  
Vol 13 (5) ◽  
pp. 796-806 ◽  
Author(s):  
Maria Vasilopoulou ◽  
George Papadimitropoulos ◽  
Leonidas C. Palilis ◽  
Dimitra G. Georgiadou ◽  
Panagiotis Argitis ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (22) ◽  
pp. 13584-13589 ◽  
Author(s):  
Meiling Shan ◽  
Haipeng Jiang ◽  
Yu Guan ◽  
Dongsu Sun ◽  
Yu Wang ◽  
...  

We have demonstrated organic light-emitting diodes (OLEDs) by incorporating copper iodide (CuI) in 4,4′,4′′-tris(N-3-methylphenyl-N-phenyl-amino)triphenylamine (m-MTDATA) as a hole injection layer (HIL) based on the emitting system of C545T–Alq3.


2012 ◽  
Vol 65 (9) ◽  
pp. 1244 ◽  
Author(s):  
Prashant Sonar ◽  
Sonsoles Garcia Santamaria ◽  
Ting Ting Lin ◽  
Alan Sellinger ◽  
Henk Bolink

The synthesis and characterisation of 2,5-bis(5′-hexyl-[2,2′-bithiophen]-5-yl)pyridine (Th4PY) and its use as a blue emitter in organic light emitting diodes (OLEDs) is reported. Th4PY was synthesised in high yield using a straightforward Suzuki coupling route with commercially available starting materials. As Th4PY is both soluble and has low molecular weight, blue OLEDs were fabricated using both spin-coating and vacuum deposition thin film processing techniques to study the effect of processing on device performance. OLED devices using a spin-coated layer consisting of 4′,4′′-tris(N-carbazolyl)triphenylamine (TCTA) and 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) as a host matrix together with Th4PY as emitter exhibited highly efficient sky-blue emission with a low turn-on voltage of 3 V, a maximum brightness close to 15000 cd m–2 at 8 V, and a maximum luminous efficiency of 7.4 cd A–1 (6.3 lm W–1) with CIE coordinates of x = 0.212, y = 0.320. The device performance characteristics are compared using various matrices and processing techniques. The promising sky-blue OLED performance, solution processability, and ambient stability make Th4PY a promising blue emitter for application in OLEDs.


2014 ◽  
Vol 15 (10) ◽  
pp. 2513-2517 ◽  
Author(s):  
Szuheng Ho ◽  
Chaoyu Xiang ◽  
Rui Liu ◽  
Neetu Chopra ◽  
Mathew Mathai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document