InAs Quantum Dot Development for Enhanced InGaAs Space Solar Cells

2004 ◽  
Vol 851 ◽  
Author(s):  
R. P. Raffaelle ◽  
Samar Sinharoy ◽  
C. William King ◽  
S. G. Bailey

ABSTRACTThe majority of high-efficiency space solar cells being produced today are based on multi-junction devices of lattice-matched III-V materials. An alternative which has been receiving an increasing amount of attention is the lattice mis-matched or metamorphic approach to multi-junction cell development. In the metamorphic triple junction cell under development by ERI and its partners, the InGaAs junction (bottom cell) of the three-cell stack is the current limiting entity, due to the current matching which must be maintained through the device. This limitation may be addressed through the incorporation of InAs quantum dot array into the depletion region of an InGaAs cell. The InAs quantum dots in the InGaAs cell will provide sub-gap absorption and thus improve its short circuit current. This cell could then be integrated into the three-cell stack to achieve a space solar cell whose efficiency exceeds current state-of-the-art standards. A theoretical estimate predicts that a InGaAlP(1.95eV)/InGaAsP(1.35 eV)/InGaAs(1.2 eV) triple junction cell incorporating quantum dots to improve the bottom cell current would have an efficiency exceeding 40%. In addition, theoretical estimates have demonstrated that the use of quantum dot structures may also hold other cell benefits such as improved temperature coefficients and better radiation tolerance, which are especially important for utilization in space. As a first step towards achieving that goal, we have initiated the development of InAs quantum dots on lattice-mismatched InGaAs (1.2 eV bandgap) grown epitaxially on GaAs by metallorganic vapor phase epitaxy (MOVPE). These quantum dots have been characterized via photoluminescence (PL) and atomic force microscopy (AFM). A correlation exists between the quantum dot size and resulting optical band structure and can be controlled via the synthesis parameters. Quantum dots were incorporated into prototype InGaAs devices. A comparison of the resulting photovoltaic efficiency under simulated 1 sun intensity and air mass zero (AM0) illumination and spectral response demonstrated that an improvement in the long-wavelength photoconversion efficiency was achieved through the incorporation of the InAs quantum dots.

2007 ◽  
Vol 1017 ◽  
Author(s):  
Seth Martin Hubbard ◽  
Ryne Raffaelle ◽  
Ross Robinson ◽  
Christopher Bailey ◽  
David Wilt ◽  
...  

AbstractThe growth of InAs quantum dots (QDs) by organometallic vapor phase epitaxy (OMVPE) for use in GaAs based photovoltaics devices was investigated. Growth of InAs quantum dots was optimized according to their morphology and photoluminescence using growth temperature and V/III ratio. The optimized InAs QDs had sizes near 7×40 nm with a dot density of 5(±0.5)×1010 cm-2. These optimized QDs were incorporated into GaAs based p-i-n solar cell structures. Cells with single and multiple (5x) layers of QDs were embedded in the i-region of the GaAs p-i-n cell structure. An array of 1 cm2 solar cells was fabricated on these wafers, IV curves collected under 1 sun AM0 conditions, and the spectral response measured from 300-1100 nm. The quantum efficiency for each QD cell clearly shows sub-bandgap conversion, indicating a contribution due to the QDs. Unfortunately, the overarching result of the addition of quantum dots to the baseline p-i-n GaAs cells was a decrease in efficiency. However, the addition of thin GaP strain compensating layers between the QD layers, was found to reduce this efficiency degradation and significantly enhance the subgap conversion in comparison to the un-compensated quantum dot cells.


2020 ◽  
Vol 3 (3) ◽  
pp. 2813-2821
Author(s):  
Jacopo Parravicini ◽  
Francesco Di Trapani ◽  
Michael D. Nelson ◽  
Zachary T. Rex ◽  
Ryan D. Beiter ◽  
...  

2013 ◽  
Vol 1551 ◽  
pp. 143-148
Author(s):  
R. Vasan ◽  
Y. F. M. Makableh ◽  
J. C. Sarker ◽  
M. O. Manasreh

ABSTRACTSolar cells based on InAs quantum dots embedded in InxGa1-xAs quantum wells grown on n-type GaAs substrate were fabricated and tested. Solar cells with In mole fraction (x) in the range of 0-40% were investigated. The performance of the solar cells was evaluated using current-voltage characteristics, spectral response, and quantum efficiency measurements. The spectral response and quantum efficiency spectra possess several peaks along the lower energy side of the spectra, which are attributed to the interband transitions in the structure. These peaks are red shifted as x is increased above 0 %. The device power conversion efficiency was extracted from the current-voltage characteristics using an AM 1.5 solar simulator. The short circuit current density increased as the x is increased above 0 %. But the overall power conversion efficiency decreased due to decrease in the open circuit voltage. The decrease in open circuit voltage is due strain induced dislocations caused by lattice mismatch.


2013 ◽  
Vol 1551 ◽  
pp. 155-161
Author(s):  
Y. F. Makableh ◽  
R. Vasan ◽  
J. C. Sarker ◽  
S. Lee ◽  
M. A. Khan ◽  
...  

ABSTRACTA study on light absorption enhancement of an InAs quantum dots embedded into InxGa1-xAs quantum well with GaAs as a barrier solar cells was carried out. Solar cell devices were fabricated from different structures, which were grown by using molecular beam epitaxy, with the In mole fraction (x) varied between 0 – 25 %. Poly-L-Lysine ligands and ZnO sol-gel was used to modify the surface of the solar cells and act as anti-reflection coatings. The anti-reflection characteristic of the ligands and the sol-gel were investigated by measuring the solar cell characteristics before and after the solar cells surface modifications. The current-voltage characteristics were measured of the fabricated solar cells before and after Poly-L-Lysine and ZnO coatings. A significant enhancement on the order of 40 % of the solar cells performance was observed. This type of enhancement was observed in the power conversion efficiency, spectral response measurements, and external quantum efficiency.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Zongbo Huang ◽  
Xiaoping Zou

PbS : In and CdS quantum dots (QDs) are sequentially assembled onto a nanocrystalline TiO2film to prepare a PbS : In/CdS cosensitized photoelectrode for QD sensitized solar cells (QDSCs). The results show that PbS : In/CdS QDs have exhibited a significant effect in the light harvest and performance of the QDSC. In the cascade structure of the electrode, the reorganization of energy levels between PbS and TiO2forms a stepwise structure of band-edge levels which is advantageous to the electron injection into TiO2. Energy conversion efficiency of 2.3% is achieved with the doped electrode, under the illumination of one sun (AM1.5, 100 mW cm2). Besides, a remarkable short circuit current density (up to 23 mA·cm−2) is achieved in the resulting PbS : In/CdS quantum dot sensitized solar cell, and the related mechanism is discussed.


2009 ◽  
Vol 1211 ◽  
Author(s):  
Kai Yang ◽  
Mohamed A El-Emawy ◽  
Tingyi Gu ◽  
Andreas Stintz ◽  
Luke F Lester

AbstractQuantum dot (QD) solar cells have been actively investigated recently since they have been theoretically shown to have the potential to realize high conversion efficiencies. However, very little research has analyzed the effect the dots have on the transport or recombination effects in the device. In this paper, we report the I-V and spectral response characteristics of InAs/InGaAs “dots-in-a-well” (DWELL) solar cells and compared them with GaAs control cells. The QD cells show higher short circuit density (Jsc) and better long-wavelength efficiency compared to the control cell. By comparing the dark current behavior of the QD cells to the GaAs control cells, we have conservatively estimated the concentration level at which the QD solar cells would surpass GaAs control devices.The quantum dot solar cells are grown by molecular beam epitaxy using the DWELL technique and a standard pin structure. The control cell structure is similar to the QD one except that there are no InAs dots or surrounding InGaAs quantum wells. The light I-V characteristics were measured under AM1.5G at 100 mW/cm2 illumination. The control cell has a Voc of 0.89V and a Jsc of 9.1 mA/cm2. The InAs QD solar cell has a Voc of 0.68 V and a Jsc of 12.2 mA/cm2. The QD cell has about a 33% larger short circuit current density compared to the GaAs control cell, which is mainly due to the higher photon absorption rate related to the DWELL structure. The spectrum response data show that the GaAs control cell and the QD cell have similar external quantum efficiency (EQE) in the visible to near-IR range (400-870nm). Beyond the GaAs absorption edge (870nm), the QD solar cell shows extended response with much higher measured EQE up to ˜1200 nm. This is strong evidence of the contribution from the InAs QDs and InGaAs QWs, the latter being the primary contributor to the increased Jsc.We calculated the “local” ideality factor from measured dark IV data, and then substituted it into a single diode equation to get the “local” reverse saturation current. Whereas the GaAs control shows the typical monotonically decreasing ideality from 0.3 to 0.8V, a linearly increasing ideality is observed in the QD cell. Based on the measured dark currents, and neglecting series resistance, we extrapolated the IV curves to higher voltages and found that they intercept at ˜2×104 mA/cm2. Dividing the intercept point Jdark by the Jsc of the QD cell conservatively estimates the light concentration (˜1400×) above which the QD cell would have a higher Voc than the GaAs cell assuming additivity applies. This result is mainly attributed to the unique carrier transport properties that are introduced into the solar cell devices that utilize QDs.


Author(s):  
Seth M. Hubbard ◽  
Christopher G. Bailey ◽  
Cory D. Cress ◽  
Stephen Polly ◽  
Jeremy Clark ◽  
...  

Author(s):  
B. C. Richards ◽  
Yong Lin ◽  
Pravin Pate ◽  
Daniel Chumney ◽  
Paul R. Sharps ◽  
...  

2008 ◽  
Vol 1121 ◽  
Author(s):  
Christopher Bailey ◽  
Seth Hubbard ◽  
Stephen J Polly ◽  
David V Forbes ◽  
Ryne P. Raffaelle

AbstractImproving the production of photocurrent in the middle junction of a InGaP/Ga(In)As/Ge triple-junction solar cells (TJSC) can improve the overall conversion efficiency of cell. One possible method to improve the middle junction photocurrent is inserting a quantum dot (QD) superlattice (SL) into the stack. It has been predicted that QD-SL enhanced TJSCs have an efficiency ceiling of 47% under a one-sun AM0 illumination spectrum. Additionally, QD array enhanced GaAs cells have the added benefit of possible intermediate band effects, anisotropic absorption and enhanced radiation tolerance. Embedding InAs quantum dots (QDs) in a single junction GaAs solar cell can increase sub-GaAs bandgap photocurrent generation. This method has been shown to improve the short circuit current density (Jsc) of single junction cells under simulated 1 sun air mass zero (AM0) illumination. However, the increase in strain due to the InAs QD self-assembly may cause defects that reduce the minority carrier lifetime resulting in losses in the cell open circuit voltage (Voc) on the order of 300-500 mV. The introduction of strain compensation (SC) layers into the superlattice (SL) structure of a QD solar cell has previously been shown to improve the device performance, including the partial recovery of Voc. Strain compensation can be used effectively to balance the residual strain, impede dislocation formation, and improve the solar cell characteristics. The effect of GaP strain compensation on the solar cell electrical and material properties was investigated. High resolution X-ray diffraction (HRXRD) scans along the symmetric (004) Bragg peak show weak intensity and wide FWHM at the zero order SL peak (SL0) for non-SC samples. Optimum SC thickness was theoretically determined using a zero in plane stress method and experimentally verified using HRXRD. Optimal strain compensation was then used to increase the QD SL stacking from 5x to 10x and 20x. Use of SC resulted in shifting of the SL0 peak toward the substrate peak as well as reduced FWHM and improved SL peak definition. Kinematical diffraction modeling of the QD structures using numerical simulation indicated this peak shift resulted from reduced overall strain in the SL stack up to 5ML of SC. The material quality improvement in the SC QD solar cells was manifested in an improved spectral response and Jsc. The optoelectronic results for GaAs solar cells with QD SL’s demonstrate a strong dependence on GaP SC layer thickness. In addition, comparison of multi junction (MJ) solar cells which incorporate the SC QD SL’s demonstrate the utility of additional sub-GaAs bandgap current contribution as a tool for additional current-matching optimization in MJ solar cells.


2014 ◽  
Vol 4 (1) ◽  
pp. 224-232 ◽  
Author(s):  
Christopher Kerestes ◽  
Cory D. Cress ◽  
Benjamin C. Richards ◽  
David V. Forbes ◽  
Yong Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document