scholarly journals Evaluation of the Corrosivity of Dust Deposited on Waste Packages at Yucca Mountain, Nevada

2006 ◽  
Vol 932 ◽  
Author(s):  
Charles Bryan ◽  
Russell Jarek ◽  
Thomas Wolery ◽  
David Shields ◽  
Mark Sutton ◽  
...  

ABSTRACTPotentially corrosive brines can form during post-closure by deliquescence of salt minerals in dust deposited on the surface of waste packages at Yucca Mountain during operations and the pre-closure ventilation period. Although thermodynamic modeling and experimental studies of brine deliquescence indicates that brines are likely to form, they will be nitrate-rich and noncorrosive. Processes that modify the brines following deliquescence are beneficial with respect to inhibition of corrosion. For example, acid degassing (HCl, HNO3) could dry out brines, but kinetic limitations are likely to limit the effect to increasing their passivity by raising the pH and increasing the NO3/Cl ratio.Predicted dust quantities and maximum brine volumes on the waste package surface are small, and physical isolation of salt minerals in the dust may inhibit formation of eutectic brines and decrease brine volumes. If brines do contact the WP surface, small droplet volumes and layer thicknesses do not support development of diffusive gradients necessary for formation on separate anodic-cathodic zones required for localized corrosion. Finally, should localized corrosion initiate, corrosion product buildup will stifle corrosion, by limiting oxygen access to the metal surface, by capillary retention of brine in corrosion product porosity, or by consumption of brine components (Cl−).

2002 ◽  
Vol 713 ◽  
Author(s):  
D.W. Shoesmith

ABSTRACTPossible long term corrosion scenarios for the engineered barriers proposed for the Yucca Mountain (Nevada, USA) repository are reviewed.Introduction:The materials proposed for the engineered barriers in the Yucca Mountain repository (Nevada, USA), Alloy-22 for the waste packages (WP) and titanium Grade-7 (Ti-7) for the drip shield (DS), appear unlikely to suffer localized corrosion (LC) and have very low passive corrosion (PC) rates (1–3). Since environmental conditions will become more benign as temperatures decline and aqueous environments become more dilute (4), this leads to the prediction of exceedingly long waste package lifetimes. In this review, possible corrosion scenarios are discussed in the context of the anticipated evolution in the repository environment.


2006 ◽  
Vol 932 ◽  
Author(s):  
Joe H. Payer

ABSTRACTIn this paper, the proposed Yucca Mountain Repository is viewed from a corrosion perspective. A major component of the long-term strategy for safe disposal of nuclear waste at the Yucca Mountain Repository is first to completely isolate the radionuclides in the waste packages for long times and to greatly retard the egress and transport of radionuclides from penetrated packages. Therefore, long-lived waste packages are important. The corrosion resistance of the waste package outer canister is reviewed, and a framework for the analysis of localized corrosion processes is presented. An overview is presented of the Materials Performance targeted thrust of the U.S. Department of Energy/Office of Civilian Radioactive Waste Management's Office of Science and Technology and International. The thrust program strives for increased scientific understanding, enhanced process models and advanced technologies for corrosion control.


1999 ◽  
Vol 556 ◽  
Author(s):  
Jerry D. Christian

AbstractAssessments are made of the corrosion characteristics of spent nuclear fuel Zircaloy cladding in a Yucca mountain repository environment and the potential for the cladding to provide protection against radionuclide release following waste package failure. Considerations and assumptions includes a waste package life near 10,000 years and air-saturated water contacted with waste package corrosion product goethite, based on the near-field geochemical environment evaluated in the Yucca Mountain Viability Assessment [3]. Literature corrosion data (general, pitting, and localized crevice attack) are evaluated on the basis of these conditions and the expected chemical environments that can result on the surface of the fuel. General corrosion of Zircaloy is expected to be negligible and result in a lifetime of the SNF cladding of several hundred thousand years, approaching a million years. General surface pitting is not expected. Effects of crevice localized corrosion for periods beyond 10,000 years are uncertain and require modeling development and experimental characterization. Details of the evaluations that provide the basis for the conclusions are presented.


2005 ◽  
Author(s):  
G. Housley ◽  
C. Shelton-davis ◽  
K. Skinner

Author(s):  
Randy J. James ◽  
Kenneth Jaquay ◽  
Michael J. Anderson

The proposed geologic repository under development at Yucca Mountain, Nevada, will employ multiple shell metallic containers (waste packages) for the disposal of nuclear waste. The waste packages represent a primary engineered barrier for protection and containment of the radioactive waste, and the design of these containers must consider a variety of structural conditions to insure structural integrity. Some of the more challenging conditions for structural integrity involve severe impact loading due to hypothesized event sequences, such as drops or collisions during transport and placement. Due to interactions between the various components leading to complex structural response during an impact sequence, nonlinear explicit dynamic simulations and highly refined models are employed to qualify the design for these severe impact loads. This paper summarizes the Design by Analysis methodologies employed for qualification of waste package design under impact loading and provides several illustrative examples using these methods. Example evaluations include a collision of a waste package by the Transport and Emplacement Vehicle (TEV) and two scenarios due to seismic events, including WP impact within the TEV and impact by falling rock. The examples are intended to illustrate the stringent Design by Analysis methods employed and also highlight the scope of structural conditions included in the design basis for waste packages to be used for proposed nuclear waste storage at Yucca Mountain.


2006 ◽  
Vol 985 ◽  
Author(s):  
Darrell Dunn ◽  
Yi-Ming Pan ◽  
Xihua He ◽  
Lietai Yang ◽  
Roberto Pabalan

ABSTRACTThe evolution of environmental conditions within the emplacement drifts of a potential high-level waste repository at Yucca Mountain, Nevada, may be influenced by several factors, including the temperature and relative humidity within the emplacement drifts and the composition of seepage water. The performance of the waste package and the drip shield may be affected by the evolution of the environmental conditions within the emplacement drifts. In this study, tests evaluated the evolution of environmental conditions on the waste package surfaces and in the surrounding host rock. The tests were designed to (i) simulate the conditions expected within the emplacement drifts; (ii) measure the changes in near-field chemistry; and (iii) determine environmental influence on the performance of the engineered barrier materials. Results of tests conducted in this study indicate the composition of salt deposits was consistent with the initial dilute water chemistry. Salts and possibly concentrated calcium chloride brines may be more aggressive than either neutral or alkaline brines.


Sign in / Sign up

Export Citation Format

Share Document