scholarly journals The Proposed Yucca Mountain Repository from a Corrosion Perspective

2006 ◽  
Vol 932 ◽  
Author(s):  
Joe H. Payer

ABSTRACTIn this paper, the proposed Yucca Mountain Repository is viewed from a corrosion perspective. A major component of the long-term strategy for safe disposal of nuclear waste at the Yucca Mountain Repository is first to completely isolate the radionuclides in the waste packages for long times and to greatly retard the egress and transport of radionuclides from penetrated packages. Therefore, long-lived waste packages are important. The corrosion resistance of the waste package outer canister is reviewed, and a framework for the analysis of localized corrosion processes is presented. An overview is presented of the Materials Performance targeted thrust of the U.S. Department of Energy/Office of Civilian Radioactive Waste Management's Office of Science and Technology and International. The thrust program strives for increased scientific understanding, enhanced process models and advanced technologies for corrosion control.

2002 ◽  
Vol 713 ◽  
Author(s):  
D.W. Shoesmith

ABSTRACTPossible long term corrosion scenarios for the engineered barriers proposed for the Yucca Mountain (Nevada, USA) repository are reviewed.Introduction:The materials proposed for the engineered barriers in the Yucca Mountain repository (Nevada, USA), Alloy-22 for the waste packages (WP) and titanium Grade-7 (Ti-7) for the drip shield (DS), appear unlikely to suffer localized corrosion (LC) and have very low passive corrosion (PC) rates (1–3). Since environmental conditions will become more benign as temperatures decline and aqueous environments become more dilute (4), this leads to the prediction of exceedingly long waste package lifetimes. In this review, possible corrosion scenarios are discussed in the context of the anticipated evolution in the repository environment.


1999 ◽  
Vol 556 ◽  
Author(s):  
T. Lian ◽  
S. Martin ◽  
J. Horn ◽  
D. Jones

AbstractThe U.S. Department of Energy is contributing to the design of a potential nuclear waste repository at Yucca Mountain, Nevada. A system to predict the contribution of Yucca Mountain (YM) bacteria to overall corrosion rates of candidate waste package (WP) materials was designed and implemented. DC linear polarization resistance techniques were applied to candidate material coupons that had been inoculated with a mixture of YM-derived bacteria with potentially corrosive activities, or left sterile. Inoculated bacteria caused a 5- to 6-fold increase in corrosion rate of carbon steel C 1020 (to approximately 7-8μm/yr), and an almost 100-fold increase in corrosion rate of Alloy 400 (to approximately μm/yr) was observed due to microbiological activities. Microbiologically Influenced Corrosion (MIC) rates on more resistant materials (CRMs: Alloy 625, Type 304 Stainless Steel, and Alloy C22) were on the order of hundredths of micrometers per year (μm/yr). Bulk chemical and surfacial endpoint analyses of spent media and coupon surfaces showed preferential dissolution of nickel from Alloy 400 coupons and depletion of chromium from CRMs after incubation with YM bacteria. Scanning electron microscopy also showed greater damage to the Alloy 400 surface than that indicated by electrochemical detection methods.


1990 ◽  
Vol 212 ◽  
Author(s):  
R. Daniel McCright

ABSTRACTCandidate container materials for high-level nuclear waste packages to be emplaced at the proposed Yucca Mountain repository site are being considered for their long-term resistance to corrosion, oxidation, embrittlement and other kinds of degradation. Selection criteria have been established, and a method has been developed for recommending a material for advanced container design activities. An extensive compilation of the degradation phenomena for six candidate materials is complete, and further studies have begun on the degradation modes affecting additional candidate materials. Phenomenological models for predicting container degradation rates are being advanced for environmental conditions applicable to Yucca Mountain. An experimental program is underway to evaluate the susceptibility of container materials to localized corrosion, stress corrosion cracking, and enhancement of corrosion and oxidation attack by gamma radiation. Initial evaluations of container fabrication and welding processes have identified some processes that appear to alleviate some long-term corrosion susceptibility concerns.


2002 ◽  
Vol 713 ◽  
Author(s):  
Joon H. Lee ◽  
Kevin G. Mon ◽  
Dennis E. Longsine ◽  
Bryan E. Bullard ◽  
Ahmed M. Moniba

ABSTRACTThe technical basis for Site Recommendation (SR) of the potential repository for high-level nuclear waste at Yucca Mountain, Nevada has been completed. Long-term containment of the waste and subsequent slow release of radionuclides from the engineered barrier system (EBS) into the geosphere will rely on a robust waste package (WP) design, among other EBS components as well as the natural barrier system. The WP and drip shield (DS) degradation analyses for the total system performance assessment (TSPA) baseline model for the SR have shown that, based on the current corrosion models and assumptions, both the DSs and WPs do not fail within the regulatory compliance time period (10,000 years). From the perspective of initial WP failure time, the analysis results are encouraging because the upper bounds of the baseline case are likely to represent the worst case combination of key corrosion model parameters that significantly affect long-term performance of WPs in the potential repository. The estimated long life-time of the WPs in the current analysis is attributed mostly to the following two factors that delay the onset of stress corrosion cracking (SCC): (1) the stress mitigation to substantial depths from the outer surface in the dual closure-lid weld regions; and (2) the very low general-corrosion rate applied to the closure-lid weld regions to corrode the compressive stress zones. Uncertainties are associated with the current WP SCC analysis. These are stress mitigation on the closure-lid welds, characterization of manufacturing flaws applied to SCC, and general corrosion rate applied to the closurelid weld regions. These uncertainties are expected to be reduced as additional data and analyses are developed.


2006 ◽  
Vol 932 ◽  
Author(s):  
Charles Bryan ◽  
Russell Jarek ◽  
Thomas Wolery ◽  
David Shields ◽  
Mark Sutton ◽  
...  

ABSTRACTPotentially corrosive brines can form during post-closure by deliquescence of salt minerals in dust deposited on the surface of waste packages at Yucca Mountain during operations and the pre-closure ventilation period. Although thermodynamic modeling and experimental studies of brine deliquescence indicates that brines are likely to form, they will be nitrate-rich and noncorrosive. Processes that modify the brines following deliquescence are beneficial with respect to inhibition of corrosion. For example, acid degassing (HCl, HNO3) could dry out brines, but kinetic limitations are likely to limit the effect to increasing their passivity by raising the pH and increasing the NO3/Cl ratio.Predicted dust quantities and maximum brine volumes on the waste package surface are small, and physical isolation of salt minerals in the dust may inhibit formation of eutectic brines and decrease brine volumes. If brines do contact the WP surface, small droplet volumes and layer thicknesses do not support development of diffusive gradients necessary for formation on separate anodic-cathodic zones required for localized corrosion. Finally, should localized corrosion initiate, corrosion product buildup will stifle corrosion, by limiting oxygen access to the metal surface, by capillary retention of brine in corrosion product porosity, or by consumption of brine components (Cl−).


1983 ◽  
Vol 26 ◽  
Author(s):  
L. D. Tyler ◽  
R. R. Peters ◽  
N. K. Hayden ◽  
J. K. Johnstone ◽  
S. Sinnock

ABSTRACTThe Nevada Nuclear Waste Storage Investigations (NNWSI) project includes a Performance Assessment task to evaluate the containment and isolation potential for a nuclear waste repository at Yucca Mountain in southern Nevada. This task includes calculations of the rates and concentrations at which radionuclides might be released and transported from the repository and will predict their consequences if they enter the human environment. Among the major tasks required for these calculations will be the development of models for water flow and nuclide transport under unsaturated conditions and in fractured hard rock. The program must also quantify the uncertainties associated with the results of the calculations. The performance assessment will provide evaluations needed for making major decisions as the U. S. Department of Energy seeks a site for a repository. An evaluation will be part of the environmental assessments prepared to accompany the potential nomination of the site. If the Yucca mountain site is selected for characterization and development as a repository, the assessments will be required for an environmental impact statement, a safety analysis report, and other documents.This program has been divided into five tasks. Collectively they will provide the performance assessments needed for the NNWSI Project.


Author(s):  
Kimberly Gray ◽  
John Vienna ◽  
Patricia Paviet

In order to maintain the U.S. domestic nuclear capability, its scientific technical leadership, and to keep our options open for closing the nuclear fuel cycle, the Department of Energy, Office of Nuclear Energy (DOE-NE) invests in various R&D programs to identify and resolve technical challenges related to the sustainability of the nuclear fuel cycle. Sustainable fuel cycles are those that improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety and limit proliferation risk. DOE-NE chartered a Study on the evaluation and screening of nuclear fuel cycle options, to provide information about the potential benefits and challenges of nuclear fuel cycle options and to identify a relatively small number of promising fuel cycle options with the potential for achieving substantial improvements compared to the current nuclear fuel cycle in the United States. The identification of these promising fuel cycles helps in focusing and strengthening the U.S. R&D investment needed to support the set of promising fuel cycle system options and nuclear material management approaches. DOE-NE is developing and evaluating advanced technologies for the immobilization of waste issued from aqueous and electrochemical recycling activities including off-gas treatment and advanced fuel fabrication. The long-term scope of waste form development and performance activities includes not only the development, demonstration, and technical maturation of advanced waste management concepts but also the development and parameterization of defensible models to predict the long-term performance of waste forms in geologic disposal. Along with the finding of the Evaluation and Screening Study will be presented the major research efforts that are underway for the development and demonstration of waste forms and processes including glass ceramic for high-level waste raffinate, alloy waste forms and glass ceramics composites for HLW from the electrochemical processing of fast reactor fuels, and high durability waste forms for radioiodine.


1986 ◽  
Vol 84 ◽  
Author(s):  
Ned E. Bibler ◽  
Carol M. Jantzen

AbstractIn the geologic disposal of nuclear waste glass, the glass will eventually interact with groundwater in the repository system. Interactions can also occur between the glass and other waste package materials that are present. These include the steel canister that holds the glass, the metal overpack over the canister, backfill materials that may be used, and the repository host rock. This review paper systematizes the additional interactions that materials in the waste package will impose on the borosilicate glass waste form-groundwater interactions. The repository geologies reviewed are tuff, salt, basalt, and granite. The interactions emphasized are those appropriate to conditions expected after repository closure, e.g. oxic vs. anoxic conditions. Whenever possible, the effect of radiation from the waste form on the interactions is examined. The interactions are evaluated based on their effect on the release and speciation of various elements including radionuclides from the glass. It is noted when further tests of repository interactions are needed before long-term predictions can be made.


Author(s):  
Randy J. James ◽  
Kenneth Jaquay ◽  
Michael J. Anderson

The proposed geologic repository under development at Yucca Mountain, Nevada, will employ multiple shell metallic containers (waste packages) for the disposal of nuclear waste. The waste packages represent a primary engineered barrier for protection and containment of the radioactive waste, and the design of these containers must consider a variety of structural conditions to insure structural integrity. Some of the more challenging conditions for structural integrity involve severe impact loading due to hypothesized event sequences, such as drops or collisions during transport and placement. Due to interactions between the various components leading to complex structural response during an impact sequence, nonlinear explicit dynamic simulations and highly refined models are employed to qualify the design for these severe impact loads. This paper summarizes the Design by Analysis methodologies employed for qualification of waste package design under impact loading and provides several illustrative examples using these methods. Example evaluations include a collision of a waste package by the Transport and Emplacement Vehicle (TEV) and two scenarios due to seismic events, including WP impact within the TEV and impact by falling rock. The examples are intended to illustrate the stringent Design by Analysis methods employed and also highlight the scope of structural conditions included in the design basis for waste packages to be used for proposed nuclear waste storage at Yucca Mountain.


Sign in / Sign up

Export Citation Format

Share Document