scholarly journals Evolution of the uranium concentration in dissolution experiments with Cr-(Pu) doped UO2 in reducing conditions at SCK CEN

MRS Advances ◽  
2021 ◽  
Author(s):  
Christelle Cachoir ◽  
Thierry Mennecart ◽  
Karel Lemmens

AbstractCr-doped UO2-based model materials were prepared at SCK CEN, mimicking modern LWR fuels, to understand the influence of Cr doping on the spent fuel dissolution behaviour in geological repository conditions. Tests were carried out with four model materials: depleted UO2, Cr-doped depleted UO2, Pu-doped UO2 and Pu-Cr-doped UO2. Static dissolution experiments have been performed up to 4 months in autoclaves under 10 bar H2 pressure with a Pt/Pd catalyst in media at pH 13.5 and at pH 9. The Cr-doping appeared to reduce the U concentrations by a factor 6 at pH 13.5, but it had no or not much effect at pH 9. Graphic abstract

2006 ◽  
Vol 985 ◽  
Author(s):  
Thierry Mennecart ◽  
Christelle Cachoir ◽  
Karel Lemmens

AbstractA general concept for the disposal of spent fuel in clay formations is based on the multibarrier principle. In such concept, the barriers for radionuclides released into the environment are the clay host rock, the backfill, the canister overpack and the fuel itself. The innermost barrier is the dissolution of UO2 matrix, which is the main component of spent fuel. However the dissolution of UO2 upon groundwater contact depends strongly on the (geo)chemical constraints prevailing in the repository. In order to determine in how far the clay properties influence the dissolution of spent fuel, two different kinds of clay were considered: Ca-bentonite which presents an initial oxidizing environment, and Boom Clay which is characterized by its strong reducing capacity. The experiments were carried out with depleted UO2 in presence of either compacted dry Ca-bentonite with Boom Clay groundwater or compacted dry Boom Clay with Boom Clay groundwater. The leach tests were performed at 25°C in anoxic atmosphere (glove box under 0.4%CO2/99.6%Ar) for 2 years. The U concentrations were sampled during these 2 years, once every 6 months and the amount of U was determined in the clay after 2 years in order to determine the dissolution rate. After 2 years, an unexpected uranium concentration was found 50 times higher in the system Boom Clay with Boom Clay water (2.10-7 mol/L) than in the system Ca-bentonite with Boom Clay water (4.10-9 mol/L), maybe resulting from a larger colloidal fraction in the system Boom Clay with Boom Clay water. Final results are expected to allow the comparison of the U retention capacity of Ca- bentonite and Boom Clay in anoxic conditions with the U retention of Boom Clay found in reducing conditions.


2010 ◽  
Vol 73 ◽  
pp. 158-170 ◽  
Author(s):  
Hiromi Tanabe ◽  
Tomofumi Sakuragi ◽  
Kenji Yamaguchi ◽  
Taemi Sato ◽  
Hitoshi Owada

I-129 is a very long-lived radionuclide that is released to an off-gas stream when spent fuels are dissolved at a reprocessing plant. An iodine filter can capture I-129 in the form of AgI. However, because AgI is unstable under the reducing conditions of a geological repository and I-129 has a very long half-life, I-129 can migrate to the biosphere. These characteristics make I-129 a key radionuclide for the safety assessment of a geological disposal of radioactive wastes generated from a reprocessing plant (TRU wastes). To improve disposal safety, several new waste forms have been developed to confine I-129 for a very long period in order to reduce the leaching of I-129 from radioactive wastes. These new waste forms have technical objectives of solidifying more than 95% of I-129 into the waste form and achieving a leaching rate of less than 10-5/y. Several iodine immobilization techniques have been examined. This paper presents experimental results concerning the treatment process, leaching behavior, modeling, and related elements of these immobilization techniques.


1997 ◽  
Vol 506 ◽  
Author(s):  
K. Le Lous ◽  
S. Constantin ◽  
J.L. Paul ◽  
D. Sambugaro ◽  
E. Vernaz

ABSTRACTWe have designed an apparatus which simulates the conditions of a deep geological repository in order to study the behaviour of spent fuel under leaching. A spent fuel and a Simfuel have thus been leached by synthesized clayey or granitic groundwater in sandy clay (90 % sand) or granite, in reducing conditions, at 90°C and 40 bars.The apparent leach rate for spent fuel in clayey water is 3.33 µg.m−2.dr−1in the presence of clay and 3.37 µg.m-−2.d−1in the presence of granite. The apparent leach rate in granitic water is slower, being 0.37 µg.m−2d−1in the presence of clay and 0.74 µg.m−2d−1in the presence of granite.For Simfuel, the apparent leach rate in clayey water is 7.4 µg.m−2.d−1in the presence of clay and 1. 1 µg.m−2.d−1in the presence of granite, which is the same order of magnitude as that for spent fuel. In granitic water, the apparent leach rate is 20 to 40 times greater than that for spent fuel. It is 14.8 µg.m−2.d−1in the presence of clay and 18.5 µg.m−2.d−1in the presence of granite.


MRS Advances ◽  
2017 ◽  
Vol 2 (13) ◽  
pp. 711-716 ◽  
Author(s):  
Lovisa Bauhn ◽  
Christian Ekberg ◽  
Patrik Fors ◽  
Kastriot Spahiu

ABSTRACTIn a scenario where ground water enters a canister for spent nuclear fuel in a deep geological repository, the presence of dissolved ions in the water could possibly influence the fuel dissolution due to effects on radiolysis yields. One species of particular interest in this context is bromide, which has a proven ability to scavenge hydroxyl radicals much faster than molecular hydrogen does. As a result, bromide could inhibit the beneficial effect of dissolved hydrogen, which has been shown in γ-radiolysis experiments. However, already a few hundred years after repository closure, α-decay starts to dominate in the radiation field from the spent fuel. Hence, the effects of α-radiolysis are expected to govern the fuel dissolution over the geological timeframes of the repository. In the present work, α-radiolysis experiments have been performed to determine the effect of bromide ions on the yield of hydrogen peroxide by mass spectrometric measurement of its decomposition product oxygen. The use of high activity 238Pu solutions has made it possible to study this effect during pure α-radiolysis from a homogeneously distributed radiation field. To simulate deep bedrock repository conditions, and to minimize the influence of in-leaking O2 from air, the studies were performed using graphite sealed stainless steel autoclaves with an initial atmosphere of 10 bar H2. The results show that addition of 1 mM Br- to the solution gives no significant effect on the O2 yield for radiation doses up to 2 MGy. This lack of effect is most likely explained by the limited radical escape yields from radiation tracks in pure α-radiolysis.


2003 ◽  
Vol 807 ◽  
Author(s):  
Paul Wersin ◽  
Lawrence H. Johnson ◽  
Bernhard Schwyn

ABSTRACTRedox conditions were assessed for a spent fuel and high-level waste (SF/HLW) and an intermediate-level waste (ILW) repository. For both cases our analysis indicates permanently reducing conditions after a relatively short oxic period. The canister-bentonite near field in the HLW case displays a high redox buffering capacity because of expected high activity of dissolved and surface-bound Fe(II). This is contrary to the cementitious near field in the ILW case where concentrations of dissolved reduced species are low and redox reactions occur primarily via solid phase transformation processes.For the bentonite-canister near field, redox potentials of about -100 to -300 mV (SHE) are estimated, which is supported by recent kinetic data on U, Tc and Se interaction with reduced iron systems. For the cementitious near field, redox potentials of about -200 to -800 mV are estimated, which reflects the large uncertainties related to this alkaline environment.


Author(s):  
Alain Sneyers ◽  
Bernd Grambow ◽  
Pedro Herna´n ◽  
Hans-Joachim Alheid ◽  
Jean-Franc¸ois Aranyossy ◽  
...  

The Integrated Project NF-PRO (Sixth Framework Programme by the European Commission) investigates key-processes in the near-field of a geological repository for the disposal of high-level vitrified waste and spent fuel. The paper discusses the project scope and content and gives a summary overview of advances made by NF-PRO.


Author(s):  
Donald Wayne Lewis

In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a “Monitored Retrievable Storage” facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to build a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE’s goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility.


1999 ◽  
Vol 14 (5) ◽  
pp. 1990-1995 ◽  
Author(s):  
J. E. Indacochea ◽  
J. L. Smith ◽  
K. R. Litko ◽  
E. J. Karell

A lithium reduction technique to condition spent fuel for disposal has been developed at the Argonne National Laboratory. There is a need to ensure adequate vessel longevity through corrosion testing and, if necessary, materials development. Several ferrous alloys and tantalum specimens were submitted to a corrosion test at 725 °C for thirty days in an argon atmosphere, using a lithium-chloride salt saturated with lithium metal and containing small amounts of lithium oxide and lithium nitride. The samples did not show dimensional or weight change, nor could corrosion attack be detected metallographically. The lithium-saturated salt system did not show any behavior similar to that of liquid lithium corrosion. From testing in other gas compositions, it appears that the presence of oxygen in the system is necessary to produce severe corrosion.


Author(s):  
Jenny Morris ◽  
Stephen Wickham ◽  
Phil Richardson ◽  
Colin Rhodes ◽  
Mike Newland

The UK Nuclear Decommissioning Authority (NDA) is responsible for safe and secure management of spent nuclear fuel. Magnox spent fuel is held at some Magnox reactor sites and at Sellafield where it is reprocessed using a number of facilities. It is intended that all Magnox fuel will be reprocessed, as described in the published Magnox Operating Plan (MOP) [1]. In the event, however, that a failure occurs within the reprocessing plant, the NDA has initiated a programme of activities to explore alternative contingency options for the management of wetted Magnox spent fuel. Magnox fuel comprises metallic uranium bar clad in a magnesium alloy, both of which corrode if exposed to oxygen or water. Consequently, contingency options are required to consider how best to manage the issues associated with the reactivity of the metals. Questions of whether Magnox spent fuel needs to be dried, how it might be conditioned, how it might be packaged, and held in temporary storage until a disposal facility becomes available, all require attention. A review of potential contingency options for Magnox fuel was conducted by Galson Sciences Ltd, UKAEA and the NDA. During storage in the presence of water, the corrosion of Magnox fuel produces hydrogen (H2) gas, which requires careful management. When uranium reacts with hydrogen in a reducing environment, the formation of uranium hydride (UH3) may occur, which under some circumstances can be pyrophoric, and might create hazards which may affect subsequent retrieval and/or repackaging (e.g. for disposal). Other factors that may affect the choice of a viable contingency option include criticality safety, environmental impacts, security and Safeguards and economic considerations. At post-irradiation examination (PIE) facilities in the UK, Magnox spent fuel is dried as a result of storage in air at ambient temperatures. Early French UNGG (Uranium Naturel Graphite Gaz) fuel was retrieved from pond storage at Cadarache, dried using a hot gas drying technique, oxidised and packaged in sealed canisters and placed in interim storage at the CASCAD (CASemate CADarache) facility. In the US, spent fuels including the Zircaloy clad Hanford N-Reactor fuels were cold vacuum dried and Idaho legacy aluminium clad metallic uranium fuels were hot vacuum dried; the dried fuel was then packaged in sealed and vented canisters (at Hanford and Idaho, respectively) for interim storage. With regard to conditioning and packaging, several different approaches have been reviewed, including encapsulation in cementitious grout or polymer, high-temperature vitrification or ceramicisation, and solution in acid or alkali solution followed by cementation or vitrification (without reprocessing). All of these approaches require further research in order to be evaluated and developed further for application to formerly wetted Magnox fuel. A variety of containers have been developed for the transport, storage and/or disposal of spent fuel in radioactive waste management programmes worldwide. Wetted Magnox spent fuel could be packaged in a container, with reservations about the potential formation of UH3 in a sealed environment where reducing conditions may develop. The applicability of different combinations of drying, conditioning and packaging techniques to the preparation of Magnox spent fuel for long-term storage and eventual disposal are discussed.


Sign in / Sign up

Export Citation Format

Share Document