scholarly journals The efficiency of various household processing for removing chlorpyrifos and cypermethrin in Chinese kale and Pakchoi

2021 ◽  
Vol 13 (3) ◽  
pp. 45-52
Author(s):  
Phannika Tongjai ◽  
Surat Hongsibsong ◽  
Ratana Sapbamrer

The vegetables, Chinese kale and Pakchoi, which are popular among the Thai people, are found to have problems with residues of pesticide. The pesticide residues in both Kale and Pakchoi were chlorpyrifos and cypermethrin. This research was to study the efficiency of pesticide residue reduction in Chinese kale and Pakchoi samples by using various household wash processing. The process included washing with normal water, 0.10% NaCl, baking soda, water flowing, and blanching. Pesticide residues were extracted from Chinese kale and Pakchoi to determine the amount of chlorpyriphos and cypermethrin residue by using analytical tools such as Gas Chromatography— Flame Photometric Detector (FPD) and Gas Chromatography—Electron Capture Detector (ECD). The results showed that the household processes for reducing the chlorpyrifos residue in Chinese kale and Pakchoi were the following: residues were reduced by 52.70–65.41%, 58.33–62.14%, 59.46–80.52%, and 46.04–62.85% when washed with normal water, 0.10% NaCl, baking soda, and water flowing through, respectively. Similarly, the household processes for reducing cypermethrin residue in Chinese kale and Pakchoi were the following: residues were reduced by 51.13–66.29%, 33.75–45.65%, 38.14–63.64%, and 44.88–61.63% when washed with normal water, 10% NaCl, baking soda, and water flowing through, respectively. Also, blanching reduced the chlorpyrifos residue by 37.96–50.44% and the cypermethrin residue by 47.86–52.42%. Therefore, while washing vegetables by soaking and dissolving substances, baking soda is the most effective when used for washing for at least 15 min to reduce the residue of pesticides. The consumers should be provided vegetables that are cleaned and have had a proper washing for removing pesticide residues and toxic residues.

Química Nova ◽  
2014 ◽  
Author(s):  
Lucia Helena Pinto Bastos ◽  
Adherlene Vieira Gouvêa ◽  
Nina Daddário Ortiz ◽  
Maria Helena W. Morelli Cardoso ◽  
Silvana do Couto Jacob ◽  
...  

Author(s):  
Zhu Yu-Xin ◽  
Xu Liu-Yue ◽  
Feng Qi ◽  
Zhu Miao-Qin

Excessive use of organophosphorus pesticides (OPPs) in fruits and vegetables may affect human health. In this paper, a simple, rapid and effective method for the determination of five OPPs in winter bamboo shoots by gas chromatography-flame photometric detector (GC-FPD) was developed. Three extractants and three extraction methods were examined respectively. The results showed that the recovery rate was higher when the samples were extracted by acetonitrile and treated with homogenate extraction method. Under the optimized conditions, recoveries ranged from 82.12% to 91.48% with the relative standard deviation (RSD) of 1.51-4.20% and the limit of detection (LOD) of 0.005-0.02 μg/mL. Results showed that using acetonitrile as extractants and homogenate extraction in sample preparation is an effective method in determination of pesticide residues in winter bamboo shoots.


2005 ◽  
Vol 23 (1) ◽  
pp. 38-43 ◽  
Author(s):  
Luiz Roberto P. Trevizan ◽  
Gilberto C. de Baptista ◽  
Geraldo Papa

Increasing horticultural production under protected cultivation requires more detailed studies about the occurence of pesticide residues, due to the special and peculiar environment under controlled conditions, in which some pests, that are of little concern in the field, become important. The insecticide acephate and its methamidophos metabolite residues were evaluated in greenhouse-grown tomatoes and compared to an open-field tomato crop. The treatments: (a) check; (b) one application of 75 g a.i. acephate.100 L-1 water; (c) one application of 150 g a.i.100 L-1 water; (d) four applications of 75 g a.i.100 L-1 water were evaluated. Fruit, leaf and soil samples were taken at (-1), zero, 1, 3, 7, 14, 21 days after the last or only application. The quantitative determinations were done by gas chromatography, using flame-photometric detector. The acephate and methamidophos residues in fruits harvested in the greenhouse and in the field were always below their respective maximum residue levels (MRL) during the whole sampling period. The metabolism of acephate into methamidophos was very low in fruits, especially important in leaves, but not well characterized in soil. Acephate residues were higher in the greenhouse than in the field, especially in leaves and soil, showing stability and persistence up to the 7-day-sampling after application.


Sign in / Sign up

Export Citation Format

Share Document