scholarly journals Determination of the influence of a filler on the properties of composite materials based on polytetrafluorothylene for tribosystems of mechanisms and machines

2021 ◽  
Vol 4 (12(112)) ◽  
pp. 61-70
Author(s):  
Volodymyr Dudin ◽  
Dmytro Makarenko ◽  
Oleksii Derkach ◽  
Yevhen Muranov

This paper reports a comprehensive laboratory study into the thermophysical, physical-mechanical characteristics, and tribological properties of the designed composite materials based on polytetrafluoroethylene. In the structures of machines and mechanisms, a significant role belongs to the tribological conjugations made from polymeric and polymer-composite materials. The reliability of machines, in general, depends to a large extent on the reliability of movable connections. Composite materials of nonmetallic origin have a low cost, they are resistant to most aggressive chemicals and are capable of operating under conditions without lubrication. It was established that the characteristics and properties of materials must be adapted to the working conditions of separately considered tribological conjugations. The mechanisms of thermal destruction have been established, both in the basic material and the carbon fiber based on it. It was found that carbon fiber, regardless of its content (quantity) in the polymer-composite material based on polytetrafluoroethylene, is mainly oriented perpendicular to the force application plane. It was found that with an increase in the carbon fiber content from 10 to 40 % by weight, the heat capacity decreases by 16‒39 % compared to the main material. The optimal operating modes for the designed composite materials have been substantiated on the basis of a pv factor: under a dry friction mode – up to 4 MPa∙m/s; at friction with lubrication – up to 36.4 MPa∙m/s. The dependence has been established of the friction coefficient on the operating modes of a composite material based on polytetrafluoroethylene containing 20 % by weight of carbon fiber when lubricated with oil and water. The results reported here make it possible to synthesize the physical-mechanical characteristics and tribological properties of composite materials in accordance with the required modes of tribological conjugation.

2020 ◽  
Vol 6 (3) ◽  
pp. 39-43
Author(s):  
G. Shaidurova ◽  
E. Gatina ◽  
Ya. Shevyakov

The results of studies on the possibility of using secondary carbon fiber extracted from the volume of spent polymer composite material by high-temperature pyrolysis for reinforcing chipboards are reflected. Studies were conducted on the physicomechanical characteristics of reinforced slabs, which showed a significant increase in performance. The results obtained make it possible to assess the possibility of the promising use of secondary fibers, which will provide a solution to the problem of completing the life cycle of polymer composite materials.


2020 ◽  
Vol 17 (35) ◽  
pp. 599-608 ◽  
Author(s):  
Alexander A. OREKHOV ◽  
Yuri A. UTKIN ◽  
Polina F. PRONINA

One of the significant innovative technologies is the creation of large-sized structures that work for a long time in space and meet stringent restrictions on overall mass characteristics. Among these structures, in the first place, is the section of bearing truss (BT). This article presents the results of experimental studies of sectors of load-bearing trusses of mesh design for compression. Recently, composite mesh cylindrical shells are used as spacecraft housings. The mesh shell is a supporting structure to which the instruments and mechanisms of the spacecraft are attached. The truss section is made of cross-linked polymer composite material with carbon fibers. The objective of the tests is to confirm the possibility of creating a lightweight mesh construction using a carbon fiber reinforced polymer composite material. To achieve this goal, the authors were assigned the following tasks: selection of carbon filler of polymer composite materials (PCM); selection of PCM binder; determination of the degree of carbon fiber reinforcement; choice of the number and orientation paths of spiral ribs, number of ring ribs and the sizes of individual ribs. As a result of the research, the calculated indicators for ensuring the bearing capacity and stiffness under the application of axial compressive load were obtained. At the same time, with the determination of bearing capacity, the deformation characteristics of the structure were twice determined in order to confirm their repeatability, as well as linear nature of the dependence of axial and radial deformations as a result of the applied load.


2021 ◽  
pp. 74-82
Author(s):  
Valery Pechenyuk ◽  
◽  
Yuri Popov ◽  

The analysis of existing aircraft structures made of metal-polymer composite materials is carried out, and a list of them with passport characteristics is compiled. The Fokker F-27 Friendship, Boeing-777 and Airbus A380, which use ARALL and GLARE materials, were selected as the aircraft under study. Formulas are determined and the distribution of normal force flows between metal and composite elements in the composition of MPCM based on aluminum sheets (aluminum-fiberglass – SIAL- 1-1, SIAL-3-1 and SIAL-1441 (9/8)) and titanium alloys (samples of titanium-carbon fiber from the patent-Example 1 and Example 3). To determine these parameters, the formulas used for a composite structure made of different materials are used. On the basis of the specification known MPCM the modified formula mixture rule for calculating the strength of new materials with a given set of orientation angles of PCM and the presence of layers of sheet metal, a comparison with standard mechanical characteristics and to show the efficiency of these formulas. Using these formulas, you can determine the strength characteristics for an arbitrary composition of the MPCM package. The features of the choice of design permissible stresses for the design of the airframe of a mainline aircraft made of metal-polymer composite material are highlighted. The concept of designing aircraft airframe elements using MPCM is considered. The results of this work will allow us to determine the rational components of the metal-polymer composite material and the structure of their distribution in the airframe design at the preliminary design stage.


2021 ◽  
Vol 887 ◽  
pp. 105-109
Author(s):  
A.M. Iuvshin ◽  
Y.S. Andreev ◽  
S.D. Tretyakov

This paper studies deployable elements which are used in satellites and different terrestrial antenna devices. Many deployable elements are made from steel or thermoset polymer composite materials and have the following disadvantages like length limitation of deployable elements, labour intensity of manufacturing process of deployable elements etc. For this purpose a deployable tube boom element was chosen and a forming method for manufacturing deployable tube element from thermoplastic polymer composite material was developed.


Author(s):  
A. Aakash ◽  
S. Selvaraj

Composite materials have the great potential and widely used as building material in numerous applications. Polymer composite material obtains the necessary properties in a controlled significant degree by the selection of strands and lattice. The properties of the materials have been selected by choosing the correct proportion of matrix and reinforcements. To build the quality of the material by expanding the fiber substance of the material. In this current examination, the mechanical properties of the glass fiber and graphite is strengthened with epoxy polymer composite were considered. Here the open embellishment method was received for the manufacture of the polymer composite The mechanical properties, for example, rigidity, compression quality, sway quality and water ingestion test was resolved according to the ASTM norms. The mechanical properties were improved as the filaments support content expanded in the grid material.


2021 ◽  
Vol 899 ◽  
pp. 202-207
Author(s):  
Dina I. Fazylova ◽  
Lyubov A. Zenitova

Polymer composite materials based on low molecular weight silicone rubber SKTN-D have been developed, which are supposed to be used as impression materials in dentistry. Vegetable silicon dioxide obtained from rice husk waste was studied as a filler.


2021 ◽  
Vol 1 (19) ◽  
pp. 27-29
Author(s):  
F.S. Senatov ◽  
R.A. Surmenev ◽  
I.О. Pariy

The activation parameters of the Shape memory effect of polylactide were reduced by creating a polymer-polymer composite material based on it. The improved material was used to obtain porous scaffolds by electro-spinning, the shape memory effect and the piezoelectric effect were studied for these scaffolds.


RSC Advances ◽  
2016 ◽  
Vol 6 (44) ◽  
pp. 38140-38147 ◽  
Author(s):  
U. Kalsoom ◽  
A. Peristyy ◽  
P. N. Nesterenko ◽  
B. Paull

A low cost 3D stereolithography based printer has been used for a new polymer composite material with enhanced thermal properties containing 30 wt% micro-particulate diamond.


2021 ◽  
Vol 5 (7) ◽  
pp. 169
Author(s):  
Vardaan Chauhan ◽  
Timo Kärki ◽  
Juha Varis

The aim of this study was to design a tooling system for manufacturing automotive components using a natural fiber polymer composite (NFPC) material. As a case study, an automotive battery cover was selected and a compression molding tool was designed, keeping in mind the need for the simplicity of the tool and ensuring the low cost of this process. However, since the original part was injection-molded with virgin polypropene, some vital changes made in the part and tool design process were documented as a guideline to show new designers how to approach the design of parts and tools using a natural fiber polymer composite material. Additionally, the challenges faced during the manufacturing of composite parts with the new tool were also documented and solutions to these challenges were suggested for large-scale production. Finally, compressive testing was performed to evaluate the performance of the structure of the designed part and to compare the recycled polymer with NFPC material. Both wood and palm fiber composite material perform better in compression testing compared to the recycled polymer material.


Sign in / Sign up

Export Citation Format

Share Document